
Ziqi Guo
School of Mechanical Engineering, 

Purdue University, 
West Lafayette, IN 47907;

The Birck Nanotechnology Center, 
Purdue University, 

West Lafayette, IN 47907 
e-mail: gziqi@purdue.edu

Daniel Carne
School of Mechanical Engineering, 

Purdue University, 
West Lafayette, IN 47907;

The Birck Nanotechnology Center, 
Purdue University, 

West Lafayette, IN 47907 
e-mail: dcarne@purdue.edu

Krutarth Khot
School of Mechanical Engineering, 

Purdue University, 
West Lafayette, IN 47907;

The Birck Nanotechnology Center, 
Purdue University, 

West Lafayette, IN 47907 
e-mail: kkhot@purdue.edu

Dudong Feng
School of Mechanical Engineering, 

Purdue University, 
West Lafayette, IN 47907;

The Birck Nanotechnology Center, 
Purdue University, 

West Lafayette, IN 47907 
e-mail: feng376@purdue.edu

Guang Lin1

School of Mechanical Engineering, 
Purdue University, 

West Lafayette, IN 47907 
e-mail: guanglin@purdue.edu

Xiulin Ruan1

School of Mechanical Engineering, 
Purdue University, 

West Lafayette, IN 47907;
The Birck Nanotechnology Center, 

Purdue University, 
West Lafayette, IN 47907 
e-mail: ruan@purdue.edu

A Review of Artificial 
Intelligence-Driven Approaches 
for Nanoscale Heat Conduction 
and Radiation
Heat conduction and radiation are two of the three fundamental modes of heat transfer, 
playing a critical role in a wide range of scientific and engineering applications ranging 
from energy systems to materials science. However, traditional physics-based simulation 
methods for modeling these processes often suffer from prohibitive computational costs. 
In recent years, the rapid advancements in artificial intelligence (AI) and machine learning 
(ML) have demonstrated remarkable potential in the modeling of nanoscale heat conduc
tion and radiation. This review presents a comprehensive overview of recent AI-driven 
developments in modeling heat conduction and radiation at the nanoscale. We first 
discuss the ML techniques for predicting phonon properties, including phonon dispersion 
and scattering rates, which are foundational for determining material thermal properties. 
Next, we explore the role of machine learning interatomic potentials (MLIPs) in molecular 
dynamics simulations and their applications to bulk materials, low-dimensional systems, 
and interfacial transport. We then review the ML approaches for solving radiative heat 
transfer problems, focusing on data-driven solutions to Maxwell’s equations and the radi
ative transfer equation. We further discuss the ML-accelerated inverse design of radiative 
energy devices, including optimization-based and generative model-based methods. 
Finally, we discuss open challenges and future directions, including data availability, 
model generalization, uncertainty quantification, and interpretability. Through this 
survey, we aim to provide a foundational understanding of how AI techniques are reshap
ing thermal science and guiding future research in nanoscale heat transfer.
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1 Introduction
Heat conduction and radiation are two of the three fundamental 

modes of heat transfer. In insulators and semiconductors, atomic 
vibration is the dominant mode of conduction. It is crucial in 
various applications, including thermal switches [1], building 
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energy savings [2,3], thermal management of semiconductor devices 
[4,5], thermal energy storage systems [6], thermoelectrics [7], and 
thermal barrier coatings [8]. Radiation, present in all matter above 
absolute zero Kelvin temperatures, involves the transfer of 
thermal energy via electromagnetic waves. It is important in appli
cations including photovoltaic energy generators [9], polaritonics 
[10], thermal-photonic devices [11,12], radiative energy converters 
[13,14], and radiative cooling [15]. To model these transport phe
nomena, a variety of physics-based computational approaches 
have been developed, including density functional theory (DFT) 
calculations, molecular dynamics (MD) simulations, the Boltzmann 
transport equation (BTE) [16], and the radiative transfer equation, 
which can be derived from BTE [17]. While these methods 
provide a rigorous foundation for understanding energy transport, 
they are often computationally expensive, especially when applied 
to large-scale or high-throughput studies.

Artificial intelligence (AI), particularly machine learning (ML), 
has witnessed remarkable growth in recent years. In the field of 
computer vision, machine learning algorithms have revolutionized 
image recognition [18], enabling computers to categorize visual 
information with unprecedented accuracy. Similarly, in natural lan
guage processing, machine learning techniques have empowered 
machines to understand and interpret human language [19], propel
ling advancements in areas such as chatbots [20,21], translation 
services [22], and text mining [23–25]. Some specific hardware 
has also been developed to accelerate the training and inferences 
of ML models [26–28]. The impact of machine learning extends 
far beyond these domains. ML has emerged as a promising tool 
to augment or replace traditional physics-based solvers. With the 
ability to learn complex patterns from large datasets and make 
fast predictions, ML has the potential to overcome the limitations 
of traditional computational methods. In nanoscale heat transfer, 
the motivation for using ML is twofold. First, ML models can be 
trained as surrogates for physics simulations, providing fast predic
tions [29,30]. This could enable tasks such as high-throughput pre
diction of material properties [31] and real-time prediction for 
operating systems, which is too slow with first-principles or numer
ical solvers. Second, ML can efficiently search large design spaces 
for materials and devices with target thermal properties [32,33], 
which is extremely challenging using brute-force methods or 
human intuition alone.

This review provides a comprehensive overview of AI-driven 
approaches for nanoscale heat conduction and radiation, as shown 
in Fig. 1. The article is organized into four key sections. It begins 
by discussing how machine learning is used to predict fundamental 
phonon properties, such as phonon dispersion and scattering, which 
are critical for understanding heat conduction in materials. Next, it 
explores the use of machine learning interatomic potentials to accel
erate molecular dynamics simulations, enabling the study of 
thermal transport in bulk materials, low-dimensional systems, and 
interfaces with near-first-principles accuracy. The review then 
shifts to AI approaches for radiative heat transfer, covering data- 

driven solutions to Maxwell’s equations and the radiative transfer 
equation. Finally, it discusses the use of ML to accelerate the 
inverse design of thermal radiative devices, including both 
optimization-based and generative model-based methods. In each 
section, we discuss how machine learning models such as multi
layer perceptrons (MLP), graph neural networks (GNN), random 
forests, diffusion models, and other techniques have been applied 
in these domains (summarized in Table 1), and analyze how these 
models compare to or enhance traditional methods. This review 
concludes with a future outlook for AI in nanoscale heat transfer 
modeling. Through this survey, we aim to provide a comprehensive 
overview of the current state of this rapidly growing field.

2 Machine Learning Prediction of Phonon Properties
As quantized modes of lattice vibrations, phonons play a central 

role in heat conduction. Accurate prediction of phonon properties is 
essential for understanding and designing materials with desired 
thermal characteristics. State-of-the-art approaches rely on ab 
initio calculations to obtain the harmonic and anharmonic force 
constants, then solve the phonon BTE for scattering and transport 
coefficients. These first-principles workflows are accurate but 
extremely computationally expensive, especially four-phonon scat
tering. In recent years, a variety of machine learning approaches 
have been developed to predict phonon properties more efficiently. 
While several meaningful attempts took an end-to-end approach to 
predict a material’s lattice thermal conductivity from simple atomic 
descriptors (including atomic masses, bondings, crystal structure, 
etc.) [34–36], they were limited by data scarcity and have yet to 
show the accuracy of first-principles level. Alternatively, ML 
may be used to predict at the level of phonon properties, i.e., 
phonon dispersion curves (frequency versus. wavevector) and 
phonon lifetimes, which can then be used to compute thermal con
ductivity. Rather than learning an opaque mapping from structure 
to conductivity, this approach tries to predict the intermediate 
phonon properties that feed into transport calculations, which 
keeps more physics.

2.1 Phonon Dispersion. Phonon dispersion describes the 
relationship between phonon frequency and wavevector within a 
material, determining the vibrational modes within the crystal 
lattice. It provides crucial information such as group velocities, 
which are directly linked to thermal conductivity, and the 
phonon density of states (DOS), which influences heat capacity. 
Current methods for calculating phonon dispersion include 
density functional perturbation theory [37] and finite-displacement 
methods.

Several ML models have been developed to predict phonon dis
persion relations quickly. Okabe et al. [38] (Fig. 2(a)) introduced a 
virtual node graph neural network (VGNN) to predict Γ-phonon 
spectra and full phonon dispersion directly from atomic coordinates. 

Fig. 1 Overview of this review
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VGNN defines virtual nodes between the connection of each node, 
which avoid a fixed number of output dimensions. Fang et al. [39] 
(Fig. 2(b)) presented a E(3)-equivariant GNN to predict the 
phonon modes of molecules and crystals. The GNN model 
learned the underlying potential energy landscape of an atomic 
structure and calculated its second derivative Hessian matrices to 
get the harmonic force constants and further predict the phonon dis
persions. Gurunathan et al. [40] (Fig. 2(c)) introduced an atomistic 
line graph neural network (ALIGNN) to predict phonon DOS and 
derived thermodynamic properties. ALIGNN combines atomistic 
graph representations with line graph connectivity to accurately 
capture the spectral features of the phonon DOS. Based on the pre
dicted phonon DOS, they can categorize the dynamical stability of 
materials and derive several thermodynamic properties, including 
the heat capacity, vibrational entropy, and the isotopic phonon- 
scattering rate. Liu et al. [41] (Fig. 2(d )) demonstrated how transfer 
learning could enhance phonon dispersion predictions by leverag
ing electronic properties, which are computationally cheaper to 
obtain. This strategy improves generalization across diverse mate
rial systems and accelerates the prediction process. Together, 
these advances in ML-driven phonon dispersion prediction open 
the door to a faster, large-scale screening of thermal and vibrational 
properties for novel materials.

2.2 Phonon Scattering. Phonon scattering governs the line
width of infrared and Raman spectra, and thermal conductivity in 
most insulators and semiconductors [16]. It is very difficult to 
model due to its dependence on complex anharmonic interactions. 
Accurate predictions of phonon scattering rates and thermal con
ductivity have been achieved through first-principles calculations, 
which rely on the DFT calculation and solving the BTE. The foun
dation work for the phonon BTE was laid by Peierls [46] and was 

later expanded by Maradudin and Fein [47] who developed 
three-phonon (3ph) scattering theory. Subsequent work by 
Broido et al. [48] combined ab initio force constants with these 
approaches, enabling robust first-principles predictions of thermal 
conductivity. This integration significantly advanced the under
standing of thermal transport [2,49,50]. More recently, Feng and 
Ruan developed the formalism and computational method for four- 
phonon (4ph) scattering, demonstrating its significance across a 
variety of materials and temperature ranges [51,52]. Their predic
tions for boron arsenide (BAs) were later confirmed by experi
ments [53–55]. The 4ph scattering has since been shown to play 
a significant role in the thermal conductivity and thermal radiative 
properties of numerous materials [56–60].

However, the first-principles calculations of phonon–phonon 
scattering, especially four-phonon scattering, are highly expensive. 
The high computational cost arises from the need to compute a 
large number of scattering processes. For 3ph scattering, we need 
to evaluate each possible triplet of phonon modes, which scales 
with N3 (N is the number of q-points in the Brillouin zone). For 
4ph scattering, the computational cost grows even more steeply, 
following a scaling of N4. This exponential increase in complexity 
makes 4ph calculations orders of magnitude more expensive than 
3ph processes, especially for materials with complex structures 
or at high temperatures, where a larger number of phonon modes 
are thermally activated.

To address these challenges, several ML methods have been 
developed. Guo et al. [42] first introduced a machine learning sur
rogate model to predict the scattering rates for individual phonon 
processes (Fig. 2(e)). By training an MLP on a small, analytically 
calculated subset of scattering processes, the model can then 
predict the scattering rates for the remaining large number of pro
cesses, bypassing the need for direct calculations. This approach 
accelerated thermal conductivity predictions by up to 70 times. 
The use of transfer learning further improved the model’s perfor
mance. Srivastava and Jain [43] developed a random forest model 
to predict the phonon relaxation time of each phonon mode 
(Fig. 2( f )). By capturing the complex, nonlinear relationships 
between phonon properties and their relaxation times, the model 
reduces computational complexity while maintaining high accu
racy. Srivastava and Jain further combined their approach with 
Guo et al.’s machine learning framework [42] to create a hybrid 
framework that achieved a two-order-of-magnitude acceleration 
in thermal conductivity calculations. These machine learning- 
based surrogate strategies significantly reduce computational 
costs.

In addition to accelerating the calculation of individual scatter
ing rates, new methods have been proposed to reduce the number 
of scattering processes that must be explicitly computed. Guo 
et al. [61] presented a method based on statistical sampling and 
maximum likelihood estimation (MLE) (Fig. 2(g)). Instead of cal
culating every possible phonon–phonon interaction, a small 
random sample of scattering processes is computed, and the total 
scattering rate is estimated from this subset, leveraging the 
central limit theorem. This method achieved acceleration of three 
to four orders of magnitude compared to traditional rigorous calcu
lation while maintaining a relative error of less than 10%. Given its 
effectiveness and efficiency, the sampling method has been widely 
used in the calculation of the thermal conductivities of complex 
materials [62–69]. Further improvements were made by Zhang 
et al. [45] (Fig. 2(h)), who combined the MLE sampling approach 
with a phonon frequency cutoff method. At low temperatures, 
many high-frequency phonon modes are not thermally activated 
and, therefore, do not contribute significantly to thermal conductiv
ity. By excluding these high-frequency phonons from the scattering 
calculations, the computational cost is reduced while still preserv
ing high accuracy. This approach is particularly effective for mate
rials at cryogenic temperatures. Besides these works, Gokhale and 
Jain [70] proposed a nonuniform Brillouin zone sampling method 
for studying layered materials, reducing the computational cost by 
a factor of ten while maintaining relative error within 12% 

Table 1 Summary of machine learning models discussed in 
this review

Application area Problem
Machine learning models/ 

techniques

Phonon 
properties

Phonon dispersion 
prediction

Graph neural network

Transfer learning

Phonon scattering Multilayer perceptron
Random forest
Maximum likelihood 
estimation

Interatomic 
potentials

MD simulations Neural network potential

Gaussian approximation 
potential
Moment tensor potential
Spectral neighbor analysis 
method
Atomic cluster expansion

Radiative heat 
transfer

Solving Maxwell’s 
equation/RTE

Physics-informed neural 
network
Convolutional neural 
network
Residual neural network
Tandem neural network

Inverse design Optimization-based 
approach

Bayesian optimization

Genetic algorithm
Monte Carlo tree search

Generative model 
approach

Variational autoencoder

Generative adversarial 
network
Diffusion model
Tandem neural network
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compared with the uniform grid approach. Malviya and Ravichan
dran [71] present a low-rank spectral method that accelerates the 
prediction of wave-like heat transport at cryogenic temperatures 

by over a million times. Guo et al. [72] develop a CPU–GPU het
erogeneous computing framework to accelerate the phonon scatter
ing calculation by 25× without sacrificing accuracy.

Fig. 2 ML prediction of phonon properties. (a) Virtual node GNN for predicting phonon dispersion, as adapted from Okabe 
et al. [38], (b) E(3)-equivariant GNN for phonon dispersion prediction, as adapted from Fang et al. [39], (c) ALIGNN for predict
ing phonon properties, as adapted from Gurunathan et al. [40], (d) transfer learning for phonon dispersion, as adapted from 
Liu et al. [41], (e) multilayer perceptron for predicting phonon scattering rate, as adapted from Guo et al. [42], (f) random forest 
model for predicting phonon relaxation time, as adapted from Srivastava and Jain [43], (g) MLE method for predicting phonon 
relaxation time, as adapted from Guo et al. [44], and (h) combining the MLE method with cutoff phonon frequency, as adapted 
from Zhang et al. [45].

120805-4 / Vol. 25, DECEMBER 2025                                                                                 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/25/12/120805/7555146/jcise-25-1280.pdf by Purdue U
niversity at W

est Lafayette user on 08 D
ecem

ber 2025



3 Machine Learning Interatomic Potentials

MD simulations are widely used to quantify and understand 
thermal transport physics at the atomic scale. They have proved 
advantageous for the discovery and enhancement of electronics, 
energy storage and conversion applications [73–81]. Unlike other 
thermal transport simulation methodologies, MD captures temper
ature and size-dependent simulations under both equilibrium and 
nonequilibrium conditions while naturally including higher-order 
anharmonicity and inelastic scattering. Their physics is essential 
to investigate heat transfer in bulk materials [52,82], nanostruc
tures, interfaces [79,80,83–86], amorphous materials [87,88], 
novel two-dimensional (2D) materials like graphene [77], MoS2
[89], alloys [90,91], etc. The Green–Kubo (GK) formalism is 
commonly used for equilibrium molecular dynamics (EMD), 
while the nonequilibrium molecular dynamics (NEMD) is used 
to simulate a heat sink and heat source-based system. Additionally, 
various formalisms have been developed to decompose MD atomic 
trajectories for accurate spectral insights of phonon properties 
[79,82,83,92].

MD simulations rely on interatomic potentials to model atomic 
interactions to perform time-evolving simulations using classical 
mechanics. Traditional empirical interatomic potentials (EIPs) 
such as Lennard–Jones potential [93], Tersoff potential [94], and 
Morse potential [95] are parametrically fitted mathematical func
tions representing the potential energy surface (PES) of a material. 
While efficient, EIPs can struggle with accurately characterizing 
thermal properties, especially for novel materials with complex 
crystal structures, interfaces, and nanostructures. On the other 
hand, ab initio molecular dynamics (AIMD) simulations based 
on quantum mechanical principles [96,97] offer very high accuracy 
with a significantly higher computational cost. Typically accurate 
thermal property evaluation requires extended MD simulations 
(1–10 ns) with time-steps on the order of 0.1–1 fs to resolve vibra
tional modes. Furthermore, characterizing complex nanostructures, 
interfaces, etc., requires a larger simulation domain to mitigate the 

limitations of size effects, such as a limited phonon mean-free path. 
Such large-scale AIMD simulations are impractical due to compu
tational limitations.

Machine learning interatomic potentials (MLIPs) have emerged 
as a potential solution to bridge the gap between computationally 
expensive AIMD and parametrically limited EIPs. MLIPs are 
trained on small-scale high-fidelity datasets from static DFT calcu
lations and finite temperature AIMD simulations, as shown in 
Fig. 3(a). They offer a faster and more accurate alternative to char
acterize thermal properties with near-first-principles accuracy. 
Behler and Parinello first demonstrated the application of neural 
networks to describe the potential energy surface of bulk silicon 
in 2007 [102]. Subsequently, various ML models have been 
employed for MLIPs such as the NNP [103–106], Gaussian 
approximation potential (GAP) [107,108], moment tensor potential 
(MTP) [109], spectral neighbor analysis method (SNAP) [110], 
and atomic cluster expansion [111], among others [112,113]. 
Models like SNAP and MTP use linear functions for the descrip
tors, which creates the need for more complex features for 
complex material systems. Neural networks can capture the nonlin
ear relations more effectively at the cost of computational effi
ciency. GAPs are nonparametric models as they adapt during the 
training process. However, for most ML models, the computational 
cost scales up as the complexity increases, limiting MD simulations 
with larger system sizes and longer run times.

MLIPs have also emerged as efficient surrogate models for DFT 
calculations to estimate interatomic force constants (IFCs) essen
tial for BTE-solvers that estimate thermal properties [99]. The 
BTE solution is capable of capturing both harmonic and anharmo
nic effects. The anharmonic IFCs are often solved using the finite- 
displacement method for supercells with specific atoms displaced 
from the equilibrium position. The number of displaced structures 
and corresponding DFT calculations increases significantly for 
higher-order terms. Furthermore, the complexity of crystals and 
their lack of symmetry can exacerbate the need for more sampling. 
MLIPs can reduce the computational time and power required to 

Fig. 3 MLIP-driven predictions of thermal properties. (a) Workflow of generating a dataset using ab initio molecular dynamics 
simulations and training an MLIP model for property prediction, as adapted from Sours and Kulkarni [98]. (b) Thermal conduc
tivity predictions for Diamond, Silicon, BAs, and InAs using MTP/ShengBTE approach, as adapted from Mortazavi et al. [99]. (c) 
Illustration of training dataset for bilayer heterostructures, and the prediction accuracy of MTP for TiS2/MoS2 systems, as 
adapted from Nair et al. [100]. (d) Interfacial thermal conductance estimate from neural network potential (NNP)-driven NEMD sim
ulations compared to experiments and other simulation techniques, as adapted from Khot et al. [101].
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evaluate each of the displaced structures to a few seconds. Various 
simpler and less complex models like least absolute shrinkage and 
selection operator, singular-value decomposition, etc., have proved 
useful for capturing temperature-dependent effects on IFCs 
[114,115]. However, their application is limited to obtaining 
IFCs and is not suitable for MD simulations. In the following sec
tions, we focus on full-scale MLIPs capable of both accurate MD 
simulations and obtaining IFCs.

3.1 Bulk Materials. Many MLIPs have been developed and 
used for detailed investigation of thermal properties of bulk mate
rials [116–138]. Qian et al. developed a GAP, and Li et al. used an 
NNP to predict the thermal conductivity of silicon in the crystalline 
and amorphous phases [117,121]. Korotaev et al. demonstrated the 
utility of MTP for complex compounds like CoSb3 [116]. They 
demonstrated a computational acceleration of 80,000× for a 
128-atom system with MTP-based prediction compared to DFT 
calculations. Mortazavi et al. developed the MTP/BTE extension 
for thermal conductivity predictions and demonstrated its accuracy 
and efficiency for semiconductors with narrow to ultrawide band
gaps, as shown in Fig. 3(b) [99]. The MLIP approach has proved 
beneficial for the extensive study of BAs, a high thermal conduc
tivity, wide bandgap semiconductor [99,123,130,136]. Liu et al. 
used an MTP to calculate the thermal conductivity of c-BAs and 
w-BAs at the three-phonon and four-phonon levels, which were 
within 8% of the DFT results for the whole temperature range 
[123]. The w-BAs require 2624 calculations to obtain IFCs up to 
the fourth order, which accounts for about 1600 h of computational 
time using 2 nodes with 40 CPU cores each. In comparison, the 
MTP utilized ∼230 h of compute time for the AIMD dataset, and 
∼10 h for the training process. Various MLIPs have been devel
oped for thermoelectrics and their thermal properties for materials 
like CoSb3, SnSe, Sb2Te3, Bi2Te3, Tl3VSe4, and BaAg2Te2
[116,126,133–135,139]. Similar MLIPs have been used to study 
the phonon thermal conductivities for other classes of materials 
like ceramics [129,138], skutterudites [116,118], perovskites 
[124], intermetallics [119], and high entropy alloys [122,128].

Besides near-first-principles accuracy, the MLIP acceleration to 
obtain anharmonic IFCs has enabled in-depth studies for systems 
at different temperatures and pressure conditions with various stoi
chiometries, phases, etc. Li et al. showed good agreement of Si 
thermal conductivity during phase transition at the melting point 
using the NNP [121]. Huang et al. [126] and Ouyang et al. [134] 
reproduced the phase transition in SnSe in their MTP-based GK 
EMD, and captured the corresponding temperature and pressure- 
dependent thermal conductivities. Tang et al. [136] investigated 
the competition between four-phonon scattering and phonon- 
vacancy scattering in c-BAs, along with their dependence on 
temperature and vacancy concentration. Tiwari et al. performed a 
comprehensive study on Al2O3 to track the thermal conductivity 
changes from 300 K to 2200 K [138]. Their work includes the con
tributions from phonon (κph), diffusion (κdiff), and radiation (κrad), 
which are essential at ultrahigh temperatures.

3.2 Two-Dimensional Materials. Beyond bulk three- 
dimensional materials, MLIPs have been used to study thermal 
properties of novel 2D materials [140–149]. Gu and Zhao [140] 
demonstrated the use of SNAP for MoS2(1−x)Se2x alloys using 
both EMD and BTE approach. Zhang and Sun [141] used the sinu
soidal approach to equilibrium molecular dynamics and time 
domain normal mode analysis for silicene using GAP. Their 
work demonstrates that GAP-based MD outperforms BTE, as 
MD captures large random perturbations of certain Si atoms, 
which move in and out of the 2D plane of the material. Mortazavi 
et al. [142,143,147] have studied various 2D materials like gra
phene, MoS2, carbon nitrides, borophene etc. Recently, the utility 
of MLIPs has been demonstrated for thermal investigations 
of 2D heterostructures like graphene-borophene [143,148], 
TiS2/MoS2 [100], and MoS2-WS2 [149]. Figure 3(c) by Nair 

et al. shows the accuracy of the MTP trained for TiS2/MoS2
bilayer heterostructures while effectively capturing the short-range 
van der Waal’s corrections [100]. Their NEMD simulations 
showed that these bilayer heterostructures possess significantly 
higher thermal conductivity compared to graphite used for 
battery energy storage.

3.3 Interfaces. Interfacial thermal resistance (ITR) poses a 
critical challenge for the current and next-generation semiconduc
tor devices. As the device feature size reduces, the number of inter
faces and power density increase. Hence, it is crucial to understand 
the physical mechanisms and the solutions to minimize or maxi
mize the ITR. However, precisely characterizing the nanoscale 
interfacial thermal transport is exceptionally challenging. Further
more, the ITR is significantly influenced by complex mechanisms 
like inelastic scattering, phonon local nonequilibrium, and interfa
cial phonon modes [79,80,85,101,150]. NEMD simulations offer a 
pathway to study interfacial thermal transport while capturing these 
physical mechanisms. However, their results are sensitive to inter
facial interactions. Typically, the interfacial atomic interactions are 
either described using approximations like arithmetic and geomet
ric mean or by fitting a simple Lennard–Jones model. These EIP- 
driven approaches to model the interface can compromise the 
primary objective of interfacial thermal transport investigations 
using NEMD simulations.

Training MLIPs using interfacial supercells at the ab initio level 
has enabled tackling the challenge of capturing interfacial interac
tions in various semiconductor/semiconductor [100,113,139,150] 
and metal/semiconductor interfaces [101,151] recently. Wyant 
et al. combined the SNAP with a translationally invariant Taylor 
expansion to study Ge/GaAs interface [113]. Chen et al. used the 
NNP-NEMD approach to compare Si/Ge interfacial thermal con
ductivity (ITC) with their experimental measurements [150]. 
NNP, neuroevolution potentials, and MTP were used to obtain 
the thermal conductivities of heterostructures of Sb2Te3/Bi2Te3, 
GeTe/Sb2Te3 and TiS2/MoS2, respectively [100,139,152]. 
Diamond is considered to be a future ultra-wide band gap 
(UWBG) semiconductor [153], however, its ITR with metal con
tacts is little known. Adnan et al. used the MTP to model metal/ 
diamond interfaces for candidate metals like Al, Mo, Zr, and Au 
[151]. Khot et al. recently developed an NNP trained on both 
bulk and interface supercells for the Al/Si interface [101]. As 
shown in Fig. 3(d), their ITC estimates using NEMD simulations 
are within 8% of the experimental consensus achieved in the last 
decade. They use spectral analysis to demonstrate the interfacial 
phonon modes and phonon local nonequilibrium at the interface 
with the near-first-principles accuracy of the NNP-NEMD 
simulations.

These studies have collectively demonstrated the utility of 
various ML architectures for obtaining PES and performing molec
ular simulations with near-first-principles accuracy. Although 
MLIPs have proven clear advantages over classical EIPs, the pre
diction errors and overfitting of ML models can lead to systematic 
discrepancies in property predictions. This issue can be further 
exacerbated, particularly for the lattice thermal conductivity 
(LTC), which depends on the accurate prediction of interatomic 
forces. Various MLIP-driven studies of high thermal conductivity 
materials like CoSb3 [116], Si [117], GaAs [154], and graphene 
[154] have shown systematic underprediction of the LTCs com
pared to experimental benchmarks. Wu et al. performed a systema
tic study and concluded that the force prediction error is the 
primary reason for the LTC underprediction [154]. They artificially 
introduced force errors in NEMD simulations at various levels and 
extrapolated the LTC at the limit of zero force error for c-Si, GaAs, 
graphene, and PbTe. The resulting LTC values were found to be in 
closer agreement with experimental results over a broad tempera
ture range. Recently, Zhou et al. built on this previous work and 
interpreted this LTC underestimation as a “pseudo-isotope 
effect” which results in slightly higher phonon scattering [155]. 
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A second-order force correction term was introduced in their work 
to improve the robustness and accuracy of LTC predictions. 
Further work is needed to minimize such artifacts from MLIP pre
dictions and to develop more optimized architectures that promote 
faster and more reliable predictions.

4 Machine Learning for Solving 
Radiative Heat Transfer

Radiative heat transfer refers to heat transfer due to the absorp
tion and emission of electromagnetic waves, also known as 
photons, which can occur across a broad wavelength spectrum. 
Typically, thermal radiation considers the ultraviolet, visible, and 
infrared bands from 0.1-μm to 100-μm wavelength as highlighted 
in Fig. 4(a))[156]. There are several fundamental mechanisms 
inducing photon absorption and emission. For thermal radiation, 
this is commonly due to electronic transitions at shorter wave
lengths, and vibrational and rotational transitions in atomic bonds 
at longer wavelengths [157]. Thermal radiation has significant 
impacts across many fields and applications. Solar applications, 
including solar power [158], solar heating [159], radiative 
cooling [160], and climate modeling [161], clearly rely on solu
tions to radiative heat transfer to model solar irradiation. Combus
tion applications, including furnaces [162] and gas turbines [163], 
require radiative heat transfer simulations due to the high temper
ature (radiative heat transfer scales with temperature to the fourth 
power) as well as the absorption and scattering induced by the 
soot and particulates within the system. Space systems necessitate 
radiative heat transfer simulations due to the near-zero conduction 
in space, meaning radiation is the dominate heat transfer mecha
nism [164], and to understand the impacts of Martian and Lunar 
regolith coatings on radiators and spacecraft [165]. Laser 
systems, such as for advanced manufacturing [166] and directed 
energy weapons [167], utilize radiative transfer simulations to 
understand heat load and safety under varying environmental con
ditions. Fast, efficient, and reliable radiative heat transfer simula
tion and modeling are critical to ensuring the advancement and 
development of these applications.

We first overview the mainstream simulation methods for 
thermal radiation. Since radiative heat transfer arises from electro
magnetic waves, thermal radiation can be modeled with Maxwell’s 
equations [157]. For simple geometries, analytical solutions exist, 
which provide fast and accurate solutions. Common analytical solu
tions include Mie theory [168], which describes incident radiation 
on a homogenous sphere, and the transfer matrix method [169], 
which can solve light propagation through multilayer plane-parallel 
media. To model complex geometries, numerical methods are 
required to solve Maxwell’s equations such as the finite-difference 
method, finite volume method, or finite element method (FEM) 
either in the time or frequency domain [170,171]. However, these 
methods are tremendously computationally expensive for 

complex geometries due to strict meshing requirements. An alterna
tive method for simulating radiative transfer is through the radiative 
transfer equation (RTE), which is the typical approach for solving 
radiative heat transfer problems [157]. The RTE treats light as inco
herent, meaning it does not capture the wave effect of light, and 
accounts for absorption, emission, and scattering or radiation. 
Solving the RTE is computationally advantageous for macro-scale 
geometries where the wavelength is significantly smaller than the 
geometric feature sizes, or when the optical properties of small fea
tures (e.g., nanoparticles) can be determined through experiment or 
by simulating Maxwell’s equations on the individual feature. 
Several analytical solutions of the RTE exist, such as Beer–Lam
bert’s law for transmission through homogeneous absorbing 
media [157]. For complex geometries, several numerical methods 
exist, including surface to surface, discrete ordinates, spherical har
monics, and Monte Carlo simulation [157]. Surface-to-surface 
models are commonly applied when the medium between each 
surface is not optically active, as it does not absorb, emit, or 
scatter light. When the medium is optically active, such as CO2
gas or combustion soot in air, a more complex model is required 
to account for absorption, emission, and scattering of light by the 
medium. Discrete ordinates method, for example, discretizes the 
angular domain as well as the spatial domain in conjunction with 
a method like the finite volume method to model radiative transfer 
between surfaces and within the optically active medium. While this 
method is fast compared to other radiative transfer simulation 
methods, it is more computationally expensive than other finite 
volume methods utilized in computational fluid dynamics 
(energy, momentum, etc.) [172]. This is due to the angular discreti
zations requiring the discretized equation to be solved multiple 
times at each cell. Alternatively, Monte Carlo simulations are also 
commonly used to simulate radiative transfer within optically 
active media [173,174]. Monte Carlo simulations, which stochasti
cally model a large number of individual energy bundles, provide 
several important benefits over other methods, including high accu
racy, the ability to quantify error, and efficient parallelization. 
However, Monte Carlo simulations are often considerably more 
computationally expensive than methods such as discrete ordinates 
[174]. Based on our discussion above, a common limitation of these 
simulation methods is the computational cost for accurate solutions.

Various AI and ML methods have been implemented to over
come these computational power limitations, including dense, 
recurrent, convolutional, and physics-informed neural networks 
Fig. 4(b)). Physics-informed neural networks (PINNs) have 
become a popular tool for accelerating physics simulations [175– 
178]. PINNs have a unique advantage over other ML models in 
that they do not require training data generated by running other 
numerical simulations, where additional error could be introduced. 
Instead, since neural networks are readily differentiable, the loss 
function can be the residual of Maxwell’s equations. For 
example, Zhang et al. [179] trained a dense physics-informed 
neural network (PINN) to predict the electric and magnetic fields 

Fig. 4 (a) Electromagnetic spectrum from ultraviolet through microwave, highlighting the band typically considered as thermal 
radiation. (b) Traditional and ML/AI methods used to solve radiative heat transfer.
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where the loss function considers the initial conditions, boundary 
conditions, and Maxwell’s equations simultaneously. Additionally, 
Lim and MaxwellNet [180] (Fig. 5(a)) trained MaxwellNet, a 
physics-informed U-net to predict the electric field through micro- 
lenses. While using PINNs to solve Maxwell’s equations provides 
many advantages, they also have disadvantages, such as the poor 
generalizability to different geometries.

To accelerate solving RTE, several ML models have been 
developed. For example, Carne et al. [181] (Fig. 5(b)) used a 
dense neural network to predict the spectral response through 
plane-parallel nanoparticulate media. Furthering this work, they 
developed an recurrent neural network (RNN) to predict the spec
tral response of multilayer plane-parallel media [186]. Stegmann 
et al. [182] (Fig. 5(c)) used a dense neural network to predict 
atmospheric transmittance based on the temperature, pressure, 
humidity, and CO2 profile. Furthermore, Kearney et al. [187] 
developed DoseNet, a convolutional neural network (CNN) to 
predict radiative transfer for dosimetry absorption maps. Each 
of these studies uses ML to completely replace the radiative trans
fer model it is trained on. Alternatively, there are ML models that 
combine with traditional radiative transfer solvers to provide an 
accelerated solution. Wu et al. [183] (Fig. 5(d )) used a residual 
neural network to predict view factors in dense granular 
systems. View factor calculations are a significant portion of 
the computational expense in surface-to-surface radiative transfer 
models, which are then used to calculate the radiative heat 

transfer. Additionally, Peng et al. [184] (Fig. 5(e)) developed 
MCDNet, a CNN for denoising dosimetry absorption maps. 
This network takes in a low-resolution Monte Carlo solution 
and increases accuracy through denoising, allowing for 76-fold 
speedups over an equivalent high-resolution Monte Carlo 
simulation.

So far, we have mainly discussed the “forward” problem, where 
the geometry and material properties are given to solve the radia
tive heat transfer. However, the inverse problem is regularly 
required where the radiative transfer is known and either properties 
or geometric features are solved for, such as the atmospheric 
parameters [188] or tissue properties [189]. A common solution 
technique for the inverse problem is to pair a traditional forward 
solver with an optimization algorithm. The material property or 
geometric feature is optimized until the predicted radiative transfer 
closely matches the known solution. Due to this being an iterative 
process, the inverse problem is considerably more computationally 
expensive than the forward problem, making it an attractive target 
for machine learning acceleration. For example, Kim et al. [190] 
trained a tandem neural network to efficiently solve the inverse 
problem to design nanoparticle-embedded radiative cooling films. 
A tandem neural network trains both the forward and inverse radi
ative transfer processes simultaneously based on training data from 
the forward process, providing significant time savings compared 
to traditional methods. Furthermore, Himes et al. [185] 
(Fig. 5( f )) used a CNN to accelerate the inverse process of 

Fig. 5 ML prediction of radiative heat transfer. (a) Physics-informed U-net for solving Maxwell’s equations, as adapted from Lim 
and MaxwellNet [180]. (b) Dense NN for solving radiative transfer in participating media, as adapted from Carne et al. [181]. 
(c) Dense NN for solving radiative transfer in participating media, as adapted from Stegmann et al. [182]. (d) Residual NN for 
solving surface-to-surface radiative transfer, as adapted from Wu et al. [183]. (e) CNN for dosimetry denoising, as adapted 
from Peng et al. [184]. (f) Tandem NN for inverse design of colored radiative cooling films, as adapted from Himes et al. [185].
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determining atmospheric properties of exoplanets based on a mea
sured spectrum, providing a 9-fold speedup compared to traditional 
methods.

5 Machine Learning-Assisted Design of Thermal 
Radiative Energy Devices

In the last section, we discussed using ML to directly solve the 
governing equations of radiative heat transfer. In this section, we 
discuss how to leverage those surrogate models to enable inverse 
design and optimization of functional thermal radiative devices. 
The design of thermal radiative energy devices is a rapidly 
growing field with critical applications in radiative cooling 
[160,191–193], thermophotovoltaics [194], thermal cloaking 
[195,196], imaging [197,198], and energy harvesting [199–201]. 
These devices rely on precise control of thermal radiation, which 
can be achieved by tailoring their structure and material properties 
to emit, absorb, or reflect specific wavelengths of thermal radiation. 
However, the design of such devices often relies heavily on human 
intuition, trial-and-error experimentation, or exhaustive parameter 
sweeps, all of which are computationally expensive and time- 
consuming. As the complexity of device design increases, these 
conventional approaches struggle to explore the vast design 
space effectively. Machine learning has emerged as a powerful 
tool for efficiently navigating such large design spaces, which 
would reduce computational costs and discover novel device archi
tectures that would be difficult to identify using traditional methods 
[202]. ML-assisted design of thermal radiative energy devices gen
erally falls into two main categories: optimization-based design 
and generative design approach. Both approaches leverage 
advanced ML algorithms to reduce computational complexity 
and improve design precision.

5.1 Optimization-Based Approach. In the optimization- 
based approach, the design of thermal radiative devices is formu
lated as an optimization task where the device’s structure, material 
composition, and geometric features are the design variables. The 
objective of this approach is to minimize the difference between the 
actual radiative properties of the device and the ideal target prop
erties. These properties typically include emissivity, absorptivity, 
and reflectivity at specific wavelengths or across specific spectral 
ranges. Optimization techniques such as Bayesian optimization 
[203,204], genetic algorithms [205,206], and quantum annealing 
[207,208] have proven to be highly effective for this purpose. 
Given that physics-based simulations of thermal radiation, such 
as finite-difference time domain and FEM, are computationally 
expensive, ML surrogates are frequently employed. These surro
gate models approximate the relationship between device configu
rations and their radiative properties. Once trained, they can predict 
the properties of new configurations much faster than rigorous sim
ulations. For example, Hu et al. [209] developed a machine 
learning-based Monte Carlo tree search algorithm to optimize a 
Tamm emitter, targeting improved power density and system effi
ciency of the thermophotovoltaic (TPV) system (Fig. 6(a)). Similar 
work has also been performed by Bohm et al. [215] for a tungsten 
emitter using a deep learning model to save the computational cost 
of rigorous coupled-wave analysis calculation. Li et al. [210] 
developed a deep reinforcement learning-based inverse design 
framework for photonic crystal design for nanoscale laser cavities 
(Fig. 6(b)). Carne et al. [205] developed a BaSO4-based radiative 
cooling paint with maximized solar reflectivity. By training a 
neural network-based surrogate model to predict radiative proper
ties [181,216], they replaced complex Monte Carlo simulations, 
leading to significant computational speedups of the evolutionary 
algorithm optimization process.

5.2 Generative Model Approach. Generative design frame
works take a different approach, aiming to directly produce 

configurations of thermal radiative devices that meet specific 
design criteria. Typical generative machine learning models 
include autoencoder [217], generative adversarial networks 
(GANs) [218], variational autoencoders (VAEs) [219–221], and 
diffusion models [222–225]. Unlike optimization methods, which 
search for optimal configurations from a predefined design space, 
generative models directly generate device structures with 
desired properties, bypassing the need for an explicit search 
process. For example, Peurifoy et al. [211] developed a fully con
nected NN for designing core–shell particles with target 
wavelength-dependent scattering properties (Fig. 6(c)). The input 
is set as the diameter and thickness of core–shell particles, and 
the output is set as the scattering cross section at discrete wave
lengths. The result shows a good reproduction of the desired prop
erties. Liu et al. [212] presented a tandem neural network to design 
a multilayer thin film composed of SiO2 and Si3N4 to obtain the 
target transmission spectrum (Fig. 6(d )). They claimed that com
bining forward modeling and inverse design in a tandem architec
ture could overcome data inconsistency issues, thereby 
accelerating the training speed of deep neural networks. Guan 
et al. [226] also applied a tandem neural network for the inverse 
design of radiative cooling material. The structure enables high 
solar transmittance, strong mid-infrared emissivity, and customiz
able visible colors. Liu et al. [213] developed a diffusion model for 
the inverse design of thermal metamaterials to enhance thermal 
transparency (Fig. 6(e)). Ignuta-Ciuncanu et al. [214] developed 
a variational autoencoder model for the design of macroscopic 
thermal metamaterials. A genetic optimizer is used to explore the 
latent design space to achieve the temperature and heat flux 
design goals (Fig. 6( f )). García-Esteban et al. [227] employ condi
tional Wasserstein GANs to generate synthetic spectral data for 
near-field radiative systems, enabling improved modeling accuracy 
in low-data regimes.

6 Challenges and Future Directions
Despite remarkable progress in applying AI to nanoscale heat 

conduction and radiation, several challenges and limitations 
remain. A key bottleneck is the lack of high-quality, standardized 
datasets. Unlike fields such as computer vision or natural language 
processing, thermal sciences lack large-scale annotated datasets 
necessary for training robust supervised learning models. Encour
agingly, recent efforts are helping to bridge this gap. For example, 
databases of phonon band structures [228], anharmonic phonon 
properties [229], and spectral radiative properties [230], along 
with large-scale initiatives such as the Materials Project [231], 
JARVIS [232], OQMD [233], and AFLOW [234], are increasingly 
becoming valuable resources for AI model training and validation. 
Moving forward, the development of benchmark datasets for prop
erties like thermal conductivity and refractive and extinction coef
ficients will be critical for enabling systematic model comparison 
and accelerating algorithmic innovation. Besides, techniques that 
can learn effectively from limited data are gaining importance. 
Multifidelity modeling [35,235] is one such approach. The core 
principle is to strategically combine datasets from sources of 
varying accuracy and computational cost. The model is trained pri
marily on a large volume of “low-fidelity” data, which is computa
tionally cheap to generate (e.g., from empirical potentials, 
simplified physical models, or less converged first-principles calcu
lations). This large dataset allows the model to learn the broad 
trends and fundamental relationships within the design space. Sub
sequently, a much smaller and more precious set of “high-fidelity” 
data, derived from highly accurate simulations and experiments, is 
used to refine, correct, and calibrate the model. By learning the dis
crepancy between the low- and high-fidelity predictions, the final 
model can achieve accuracy approaching that of the high-fidelity 
method with a limited amount of data.

Another challenge is the generalization capabilities of current 
models. Many AI models are trained on narrow domains with 
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Fig. 6 ML-assisted design of thermal radiative energy devices. (a) Machine learning Monte Carlo tree search for Tamm 
thermal emitter in TPV systems, as adapted from Hu et al. [209]. (b) Deep reinforcement learning-based inverse design of 
photonic crystals, as adapted from Li et al. [210]. (c) Fully connected neural network for designing core–shell particle, as 
adapted from Peurifoy et al. [211]. (d) A tandem neural network for the inverse design of multilayer photonic devices, as 
adapted from Liu et al. [212]. (e) Diffusion model for the generative design of thermal metamaterials, as adapted from Liu 
et al. [213]. (f ) VAE model for the generative design of thermal metamaterials, as adapted from Ignuta-Ciuncanu et al. [214].
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specific materials, geometries, or thermal conditions, which limits 
their applicability to new settings. Enhancing model generality and 
transferability is therefore a key research priority. For example, 
universal machine-learned interatomic potentials are being devel
oped to capture diverse behaviors across chemical compositions 
and structures. The idea of foundational models is also gaining 
interest in the materials community. Similar to large pretrained 
models in natural language processing, these models aim to learn 
general representations of material structures, which can then be 
fine-tuned for specific tasks such as thermal conductivity or radia
tive property prediction [236–239]. There has already been work 
on using these models for finding high thermal conductivity mate
rials [240].

For real-world AI deployment, particularly in safety-critical or 
high-precision thermal applications, rigorous uncertainty quantifi
cation (UQ) is essential. Instead of a single point-value prediction, 
UQ methods yield a predictive distribution, effectively placing 
“error bars” on the output. This is vital for understanding how 
much trust should be placed in its predictions for engineering 
design and risk analysis. Gaussian processes offer a principled 
way to quantify predictive uncertainty [241,242], though they 
often do not scale well to large or high-dimensional datasets. As 
alternatives, deep learning approaches such as Bayesian neural net
works [243–245] and dropout-based techniques [246] have been 
adopted for scalable uncertainty estimation. Interpretability is 
another crucial issue. While deep neural networks have demon
strated powerful predictive capabilities, they are often criticized 
for their lack of transparency. Improving model interpretability is 
not only important for trust and verification but can also lead to 
new scientific insights [247,248]. Techniques such as symbolic 
regression [249] can help to illuminate the underlying physical prin
ciples captured by AI models. Unlike standard regression, which fits 
data to a predefined equation (e.g., a line or polynomial), symbolic 
regression explores a vast space of mathematical expressions to dis
cover the optimal functional form that describes the data. Instead of 
a black box model, we obtain a simple, human-understandable ana
lytical equation that can reveal novel physical correlations or even 
approximate underlying physical laws.

7 Conclusions
In this review, we have highlighted selected recent advances in 

AI-driven nanoscale heat conduction and radiation. We began 
with machine learning predictions of phonon properties, including 
phonon dispersion and scattering. We then explored machine learn
ing interatomic potentials and their application to thermal transport 
in both bulk and interfacial materials. Next, we discussed AI 
approaches to radiative heat transfer, including solving Maxwell’s 
equations and the radiative transfer equation, as well as accelerat
ing the inverse design of thermal radiative devices. Finally, we pre
sented open challenges and promising future directions—focusing 
on data, generalization, uncertainty quantification, and interpret
ability—that we see as robust opportunities to continue the 
embrace of AI into thermal transport research.
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