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A Review of Artificial
Intelligence-Driven Approaches
for Nanoscale Heat Conduction
and Radiation

Heat conduction and radiation are two of the three fundamental modes of heat transfer,
playing a critical role in a wide range of scientific and engineering applications ranging
from energy systems to materials science. However, traditional physics-based simulation
methods for modeling these processes often suffer from prohibitive computational costs.
In recent years, the rapid advancements in artificial intelligence (Al) and machine learning
(ML) have demonstrated remarkable potential in the modeling of nanoscale heat conduc-
tion and radiation. This review presents a comprehensive overview of recent Al-driven
developments in modeling heat conduction and radiation at the nanoscale. We first
discuss the ML techniques for predicting phonon properties, including phonon dispersion
and scattering rates, which are foundational for determining material thermal properties.
Next, we explore the role of machine learning interatomic potentials (MLIPs) in molecular
dynamics simulations and their applications to bulk materials, low-dimensional systems,
and interfacial transport. We then review the ML approaches for solving radiative heat
transfer problems, focusing on data-driven solutions to Maxwell’s equations and the radi-
ative transfer equation. We further discuss the ML-accelerated inverse design of radiative
energy devices, including optimization-based and generative model-based methods.
Finally, we discuss open challenges and future directions, including data availability,
model generalization, uncertainty quantification, and interpretability. Through this
survey, we aim to provide a foundational understanding of how Al techniques are reshap-
ing thermal science and guiding future research in nanoscale heat transfer.
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1 Introduction

Heat conduction and radiation are two of the three fundamental
modes of heat transfer. In insulators and semiconductors, atomic
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energy savings [2,3], thermal management of semiconductor devices
[4,5], thermal energy storage systems [6], thermoelectrics [7], and
thermal barrier coatings [8]. Radiation, present in all matter above
absolute zero Kelvin temperatures, involves the transfer of
thermal energy via electromagnetic waves. It is important in appli-
cations including photovoltaic energy generators [9], polaritonics
[10], thermal-photonic devices [11,12], radiative energy converters
[13,14], and radiative cooling [15]. To model these transport phe-
nomena, a variety of physics-based computational approaches
have been developed, including density functional theory (DFT)
calculations, molecular dynamics (MD) simulations, the Boltzmann
transport equation (BTE) [16], and the radiative transfer equation,
which can be derived from BTE [17]. While these methods
provide a rigorous foundation for understanding energy transport,
they are often computationally expensive, especially when applied
to large-scale or high-throughput studies.

Artificial intelligence (Al), particularly machine learning (ML),
has witnessed remarkable growth in recent years. In the field of
computer vision, machine learning algorithms have revolutionized
image recognition [18], enabling computers to categorize visual
information with unprecedented accuracy. Similarly, in natural lan-
guage processing, machine learning techniques have empowered
machines to understand and interpret human language [19], propel-
ling advancements in areas such as chatbots [20,21], translation
services [22], and text mining [23-25]. Some specific hardware
has also been developed to accelerate the training and inferences
of ML models [26-28]. The impact of machine learning extends
far beyond these domains. ML has emerged as a promising tool
to augment or replace traditional physics-based solvers. With the
ability to learn complex patterns from large datasets and make
fast predictions, ML has the potential to overcome the limitations
of traditional computational methods. In nanoscale heat transfer,
the motivation for using ML is twofold. First, ML models can be
trained as surrogates for physics simulations, providing fast predic-
tions [29,30]. This could enable tasks such as high-throughput pre-
diction of material properties [31] and real-time prediction for
operating systems, which is too slow with first-principles or numer-
ical solvers. Second, ML can efficiently search large design spaces
for materials and devices with target thermal properties [32,33],
which is extremely challenging using brute-force methods or
human intuition alone.

This review provides a comprehensive overview of Al-driven
approaches for nanoscale heat conduction and radiation, as shown
in Fig. 1. The article is organized into four key sections. It begins
by discussing how machine learning is used to predict fundamental
phonon properties, such as phonon dispersion and scattering, which
are critical for understanding heat conduction in materials. Next, it
explores the use of machine learning interatomic potentials to accel-
erate molecular dynamics simulations, enabling the study of
thermal transport in bulk materials, low-dimensional systems, and
interfaces with near-first-principles accuracy. The review then
shifts to AI approaches for radiative heat transfer, covering data-
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driven solutions to Maxwell’s equations and the radiative transfer
equation. Finally, it discusses the use of ML to accelerate the
inverse design of thermal radiative devices, including both
optimization-based and generative model-based methods. In each
section, we discuss how machine learning models such as multi-
layer perceptrons (MLP), graph neural networks (GNN), random
forests, diffusion models, and other techniques have been applied
in these domains (summarized in Table 1), and analyze how these
models compare to or enhance traditional methods. This review
concludes with a future outlook for Al in nanoscale heat transfer
modeling. Through this survey, we aim to provide a comprehensive
overview of the current state of this rapidly growing field.

2 Machine Learning Prediction of Phonon Properties

As quantized modes of lattice vibrations, phonons play a central
role in heat conduction. Accurate prediction of phonon properties is
essential for understanding and designing materials with desired
thermal characteristics. State-of-the-art approaches rely on ab
initio calculations to obtain the harmonic and anharmonic force
constants, then solve the phonon BTE for scattering and transport
coefficients. These first-principles workflows are accurate but
extremely computationally expensive, especially four-phonon scat-
tering. In recent years, a variety of machine learning approaches
have been developed to predict phonon properties more efficiently.
While several meaningful attempts took an end-to-end approach to
predict a material’s lattice thermal conductivity from simple atomic
descriptors (including atomic masses, bondings, crystal structure,
etc.) [34-36], they were limited by data scarcity and have yet to
show the accuracy of first-principles level. Alternatively, ML
may be used to predict at the level of phonon properties, i.e.,
phonon dispersion curves (frequency versus. wavevector) and
phonon lifetimes, which can then be used to compute thermal con-
ductivity. Rather than learning an opaque mapping from structure
to conductivity, this approach tries to predict the intermediate
phonon properties that feed into transport calculations, which
keeps more physics.

2.1 Phonon Dispersion. Phonon dispersion describes the
relationship between phonon frequency and wavevector within a
material, determining the vibrational modes within the crystal
lattice. It provides crucial information such as group velocities,
which are directly linked to thermal conductivity, and the
phonon density of states (DOS), which influences heat capacity.
Current methods for calculating phonon dispersion include
density functional perturbation theory [37] and finite-displacement
methods.

Several ML models have been developed to predict phonon dis-
persion relations quickly. Okabe et al. [38] (Fig. 2(a)) introduced a
virtual node graph neural network (VGNN) to predict I"-phonon
spectra and full phonon dispersion directly from atomic coordinates.
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Fig. 1 Overview of this review
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Table 1 Summary of machine learning models discussed in
this review

Machine learning models/

Application area Problem techniques

Phonon Phonon dispersion Graph neural network
properties prediction
Transfer learning
Phonon scattering Multilayer perceptron
Random forest
Maximum likelihood
estimation
Interatomic MD simulations Neural network potential
potentials

Gaussian approximation

potential

Moment tensor potential

Spectral neighbor analysis

method

Atomic cluster expansion
Radiative heat
transfer

Solving Maxwell’s
equation/RTE

Physics-informed neural
network

Convolutional neural
network

Residual neural network
Tandem neural network

Inverse design Optimization-based

approach

Bayesian optimization

Genetic algorithm
Monte Carlo tree search

Generative model Variational autoencoder
approach
Generative adversarial
network
Diffusion model

Tandem neural network

VGNN defines virtual nodes between the connection of each node,
which avoid a fixed number of output dimensions. Fang et al. [39]
(Fig. 2(b)) presented a E(3)-equivariant GNN to predict the
phonon modes of molecules and crystals. The GNN model
learned the underlying potential energy landscape of an atomic
structure and calculated its second derivative Hessian matrices to
get the harmonic force constants and further predict the phonon dis-
persions. Gurunathan et al. [40] (Fig. 2(c)) introduced an atomistic
line graph neural network (ALIGNN) to predict phonon DOS and
derived thermodynamic properties. ALIGNN combines atomistic
graph representations with line graph connectivity to accurately
capture the spectral features of the phonon DOS. Based on the pre-
dicted phonon DOS, they can categorize the dynamical stability of
materials and derive several thermodynamic properties, including
the heat capacity, vibrational entropy, and the isotopic phonon-
scattering rate. Liu et al. [41] (Fig. 2(d)) demonstrated how transfer
learning could enhance phonon dispersion predictions by leverag-
ing electronic properties, which are computationally cheaper to
obtain. This strategy improves generalization across diverse mate-
rial systems and accelerates the prediction process. Together,
these advances in ML-driven phonon dispersion prediction open
the door to a faster, large-scale screening of thermal and vibrational
properties for novel materials.

2.2 Phonon Scattering. Phonon scattering governs the line-
width of infrared and Raman spectra, and thermal conductivity in
most insulators and semiconductors [16]. It is very difficult to
model due to its dependence on complex anharmonic interactions.
Accurate predictions of phonon scattering rates and thermal con-
ductivity have been achieved through first-principles calculations,
which rely on the DFT calculation and solving the BTE. The foun-
dation work for the phonon BTE was laid by Peierls [46] and was
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later expanded by Maradudin and Fein [47] who developed
three-phonon (3ph) scattering theory. Subsequent work by
Broido et al. [48] combined ab initio force constants with these
approaches, enabling robust first-principles predictions of thermal
conductivity. This integration significantly advanced the under-
standing of thermal transport [2,49,50]. More recently, Feng and
Ruan developed the formalism and computational method for four-
phonon (4ph) scattering, demonstrating its significance across a
variety of materials and temperature ranges [51,52]. Their predic-
tions for boron arsenide (BAs) were later confirmed by experi-
ments [53-55]. The 4ph scattering has since been shown to play
a significant role in the thermal conductivity and thermal radiative
properties of numerous materials [56—60].

However, the first-principles calculations of phonon—phonon
scattering, especially four-phonon scattering, are highly expensive.
The high computational cost arises from the need to compute a
large number of scattering processes. For 3ph scattering, we need
to evaluate each possible triplet of phonon modes, which scales
with N3 (N is the number of g-points in the Brillouin zone). For
4ph scattering, the computational cost grows even more steeply,
following a scaling of N*. This exponential increase in complexity
makes 4ph calculations orders of magnitude more expensive than
3ph processes, especially for materials with complex structures
or at high temperatures, where a larger number of phonon modes
are thermally activated.

To address these challenges, several ML methods have been
developed. Guo et al. [42] first introduced a machine learning sur-
rogate model to predict the scattering rates for individual phonon
processes (Fig. 2(e)). By training an MLP on a small, analytically
calculated subset of scattering processes, the model can then
predict the scattering rates for the remaining large number of pro-
cesses, bypassing the need for direct calculations. This approach
accelerated thermal conductivity predictions by up to 70 times.
The use of transfer learning further improved the model’s perfor-
mance. Srivastava and Jain [43] developed a random forest model
to predict the phonon relaxation time of each phonon mode
(Fig. 2(f)). By capturing the complex, nonlinear relationships
between phonon properties and their relaxation times, the model
reduces computational complexity while maintaining high accu-
racy. Srivastava and Jain further combined their approach with
Guo et al.’s machine learning framework [42] to create a hybrid
framework that achieved a two-order-of-magnitude acceleration
in thermal conductivity calculations. These machine learning-
based surrogate strategies significantly reduce computational
costs.

In addition to accelerating the calculation of individual scatter-
ing rates, new methods have been proposed to reduce the number
of scattering processes that must be explicitly computed. Guo
et al. [61] presented a method based on statistical sampling and
maximum likelihood estimation (MLE) (Fig. 2(g)). Instead of cal-
culating every possible phonon—phonon interaction, a small
random sample of scattering processes is computed, and the total
scattering rate is estimated from this subset, leveraging the
central limit theorem. This method achieved acceleration of three
to four orders of magnitude compared to traditional rigorous calcu-
lation while maintaining a relative error of less than 10%. Given its
effectiveness and efficiency, the sampling method has been widely
used in the calculation of the thermal conductivities of complex
materials [62-69]. Further improvements were made by Zhang
et al. [45] (Fig. 2(h)), who combined the MLE sampling approach
with a phonon frequency cutoff method. At low temperatures,
many high-frequency phonon modes are not thermally activated
and, therefore, do not contribute significantly to thermal conductiv-
ity. By excluding these high-frequency phonons from the scattering
calculations, the computational cost is reduced while still preserv-
ing high accuracy. This approach is particularly effective for mate-
rials at cryogenic temperatures. Besides these works, Gokhale and
Jain [70] proposed a nonuniform Brillouin zone sampling method
for studying layered materials, reducing the computational cost by
a factor of ten while maintaining relative error within 12%
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Fig.2 ML prediction of phonon properties. (a) Virtual node GNN for predicting phonon dispersion, as adapted from Okabe
et al. [38], (b) E(3)-equivariant GNN for phonon dispersion prediction, as adapted from Fang et al. [39], (c) ALIGNN for predict-
ing phonon properties, as adapted from Gurunathan et al. [40], (d) transfer learning for phonon dispersion, as adapted from
Liu et al. [41], (e) multilayer perceptron for predicting phonon scattering rate, as adapted from Guo et al. [42], (f) random forest
model for predicting phonon relaxation time, as adapted from Srivastava and Jain [43], (g) MLE method for predicting phonon
relaxation time, as adapted from Guo et al. [44], and (h) combining the MLE method with cutoff phonon frequency, as adapted
from Zhang et al. [45].
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compared with the uniform grid approach. Malviya and Ravichan-
dran [71] present a low-rank spectral method that accelerates the
prediction of wave-like heat transport at cryogenic temperatures

by over a million times. Guo et al. [72] develop a CPU-GPU het-
erogeneous computing framework to accelerate the phonon scatter-
ing calculation by 25X without sacrificing accuracy.
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3 Machine Learning Interatomic Potentials

MD simulations are widely used to quantify and understand
thermal transport physics at the atomic scale. They have proved
advantageous for the discovery and enhancement of electronics,
energy storage and conversion applications [73-81]. Unlike other
thermal transport simulation methodologies, MD captures temper-
ature and size-dependent simulations under both equilibrium and
nonequilibrium conditions while naturally including higher-order
anharmonicity and inelastic scattering. Their physics is essential
to investigate heat transfer in bulk materials [52,82], nanostruc-
tures, interfaces [79,80,83-86], amorphous materials [87,88],
novel two-dimensional (2D) materials like graphene [77], MoS,
[89], alloys [90,91], etc. The Green—Kubo (GK) formalism is
commonly used for equilibrium molecular dynamics (EMD),
while the nonequilibrium molecular dynamics (NEMD) is used
to simulate a heat sink and heat source-based system. Additionally,
various formalisms have been developed to decompose MD atomic
trajectories for accurate spectral insights of phonon properties
[79,82,83,92].

MD simulations rely on interatomic potentials to model atomic
interactions to perform time-evolving simulations using classical
mechanics. Traditional empirical interatomic potentials (EIPs)
such as Lennard—Jones potential [93], Tersoff potential [94], and
Morse potential [95] are parametrically fitted mathematical func-
tions representing the potential energy surface (PES) of a material.
While efficient, EIPs can struggle with accurately characterizing
thermal properties, especially for novel materials with complex
crystal structures, interfaces, and nanostructures. On the other
hand, ab initio molecular dynamics (AIMD) simulations based
on quantum mechanical principles [96,97] offer very high accuracy
with a significantly higher computational cost. Typically accurate
thermal property evaluation requires extended MD simulations
(1-10ns) with time-steps on the order of 0.1-1 fs to resolve vibra-
tional modes. Furthermore, characterizing complex nanostructures,
interfaces, etc., requires a larger simulation domain to mitigate the

L wroetmo
1 300, 600, 900 K

Enengy

187 Topologies

Tima
| o | e
1 f —

NPT DP-MD Cebulala
298 - 1000 K Proptties
0.1, 1.0, 10.0 bar | L)

limitations of size effects, such as a limited phonon mean-free path.
Such large-scale AIMD simulations are impractical due to compu-
tational limitations.

Machine learning interatomic potentials (MLIPs) have emerged
as a potential solution to bridge the gap between computationally
expensive AIMD and parametrically limited EIPs. MLIPs are
trained on small-scale high-fidelity datasets from static DFT calcu-
lations and finite temperature AIMD simulations, as shown in
Fig. 3(a). They offer a faster and more accurate alternative to char-
acterize thermal properties with near-first-principles accuracy.
Behler and Parinello first demonstrated the application of neural
networks to describe the potential energy surface of bulk silicon
in 2007 [102]. Subsequently, various ML models have been
employed for MLIPs such as the NNP [103-106], Gaussian
approximation potential (GAP) [107,108], moment tensor potential
(MTP) [109], spectral neighbor analysis method (SNAP) [110],
and atomic cluster expansion [111], among others [112,113].
Models like SNAP and MTP use linear functions for the descrip-
tors, which creates the need for more complex features for
complex material systems. Neural networks can capture the nonlin-
ear relations more effectively at the cost of computational effi-
ciency. GAPs are nonparametric models as they adapt during the
training process. However, for most ML models, the computational
cost scales up as the complexity increases, limiting MD simulations
with larger system sizes and longer run times.

MLIPs have also emerged as efficient surrogate models for DFT
calculations to estimate interatomic force constants (IFCs) essen-
tial for BTE-solvers that estimate thermal properties [99]. The
BTE solution is capable of capturing both harmonic and anharmo-
nic effects. The anharmonic IFCs are often solved using the finite-
displacement method for supercells with specific atoms displaced
from the equilibrium position. The number of displaced structures
and corresponding DFT calculations increases significantly for
higher-order terms. Furthermore, the complexity of crystals and
their lack of symmetry can exacerbate the need for more sampling.
MLIPs can reduce the computational time and power required to

MD NNP M DM |I:_.-’3. M
Experiments with -\j"-l|_:|'|- M/
e-ph !

2 400 /  DMM

Fig. 3 MLIP-driven predictions of thermal properties. (a) Workflow of generating a dataset using ab initio molecular dynamics
simulations and training an MLIP model for property prediction, as adapted from Sours and Kulkarni [98]. (b) Thermal conduc-
tivity predictions for Diamond, Silicon, BAs, and InAs using MTP/ShengBTE approach, as adapted from Mortazavi et al. [99]. (c)
lllustration of training dataset for bilayer heterostructures, and the prediction accuracy of MTP for TiS,/MoS, systems, as
adapted from Nair et al. [100]. (d) Interfacial thermal conductance estimate from neural network potential (NNP)-driven NEMD sim-
ulations compared to experiments and other simulation techniques, as adapted from Khot et al. [101].
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evaluate each of the displaced structures to a few seconds. Various
simpler and less complex models like least absolute shrinkage and
selection operator, singular-value decomposition, etc., have proved
useful for capturing temperature-dependent effects on IFCs
[114,115]. However, their application is limited to obtaining
IFCs and is not suitable for MD simulations. In the following sec-
tions, we focus on full-scale MLIPs capable of both accurate MD
simulations and obtaining IFCs.

3.1 Bulk Materials. Many MLIPs have been developed and
used for detailed investigation of thermal properties of bulk mate-
rials [116-138]. Qian et al. developed a GAP, and Li et al. used an
NNP to predict the thermal conductivity of silicon in the crystalline
and amorphous phases [117,121]. Korotaev et al. demonstrated the
utility of MTP for complex compounds like CoSbs [116]. They
demonstrated a computational acceleration of 80,000 for a
128-atom system with MTP-based prediction compared to DFT
calculations. Mortazavi et al. developed the MTP/BTE extension
for thermal conductivity predictions and demonstrated its accuracy
and efficiency for semiconductors with narrow to ultrawide band-
gaps, as shown in Fig. 3(b) [99]. The MLIP approach has proved
beneficial for the extensive study of BAs, a high thermal conduc-
tivity, wide bandgap semiconductor [99,123,130,136]. Liu et al.
used an MTP to calculate the thermal conductivity of c-BAs and
w-BAs at the three-phonon and four-phonon levels, which were
within 8% of the DFT results for the whole temperature range
[123]. The w-BAs require 2624 calculations to obtain IFCs up to
the fourth order, which accounts for about 1600 h of computational
time using 2 nodes with 40 CPU cores each. In comparison, the
MTP utilized ~230h of compute time for the AIMD dataset, and
~10h for the training process. Various MLIPs have been devel-
oped for thermoelectrics and their thermal properties for materials
like CoSbs, SnSe, Sb,Tes, Bi,Tes, Tl3VSes, and BaAg,Te,
[116,126,133-135,139]. Similar MLIPs have been used to study
the phonon thermal conductivities for other classes of materials
like ceramics [129,138], skutterudites [116,118], perovskites
[124], intermetallics [119], and high entropy alloys [122,128].

Besides near-first-principles accuracy, the MLIP acceleration to
obtain anharmonic IFCs has enabled in-depth studies for systems
at different temperatures and pressure conditions with various stoi-
chiometries, phases, etc. Li et al. showed good agreement of Si
thermal conductivity during phase transition at the melting point
using the NNP [121]. Huang et al. [126] and Ouyang et al. [134]
reproduced the phase transition in SnSe in their MTP-based GK
EMD, and captured the corresponding temperature and pressure-
dependent thermal conductivities. Tang et al. [136] investigated
the competition between four-phonon scattering and phonon-
vacancy scattering in c-BAs, along with their dependence on
temperature and vacancy concentration. Tiwari et al. performed a
comprehensive study on Al,O3 to track the thermal conductivity
changes from 300 K to 2200 K [138]. Their work includes the con-
tributions from phonon (kpp), diffusion (kgit), and radiation (kpaq),
which are essential at ultrahigh temperatures.

3.2 Two-Dimensional Materials. Beyond bulk three-
dimensional materials, MLIPs have been used to study thermal
properties of novel 2D materials [140-149]. Gu and Zhao [140]
demonstrated the use of SNAP for MoSy_ySey, alloys using
both EMD and BTE approach. Zhang and Sun [141] used the sinu-
soidal approach to equilibrium molecular dynamics and time
domain normal mode analysis for silicene using GAP. Their
work demonstrates that GAP-based MD outperforms BTE, as
MD captures large random perturbations of certain Si atoms,
which move in and out of the 2D plane of the material. Mortazavi
et al. [142,143,147] have studied various 2D materials like gra-
phene, MoS,, carbon nitrides, borophene etc. Recently, the utility
of MLIPs has been demonstrated for thermal investigations
of 2D heterostructures like graphene-borophene [143,148],
TiS,/MoS, [100], and MoS,-WS, [149]. Figure 3(c) by Nair
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et al. shows the accuracy of the MTP trained for TiS;/MoS,
bilayer heterostructures while effectively capturing the short-range
van der Waal’s corrections [100]. Their NEMD simulations
showed that these bilayer heterostructures possess significantly
higher thermal conductivity compared to graphite used for
battery energy storage.

3.3 Interfaces. Interfacial thermal resistance (ITR) poses a
critical challenge for the current and next-generation semiconduc-
tor devices. As the device feature size reduces, the number of inter-
faces and power density increase. Hence, it is crucial to understand
the physical mechanisms and the solutions to minimize or maxi-
mize the ITR. However, precisely characterizing the nanoscale
interfacial thermal transport is exceptionally challenging. Further-
more, the ITR is significantly influenced by complex mechanisms
like inelastic scattering, phonon local nonequilibrium, and interfa-
cial phonon modes [79,80,85,101,150]. NEMD simulations offer a
pathway to study interfacial thermal transport while capturing these
physical mechanisms. However, their results are sensitive to inter-
facial interactions. Typically, the interfacial atomic interactions are
either described using approximations like arithmetic and geomet-
ric mean or by fitting a simple Lennard—Jones model. These EIP-
driven approaches to model the interface can compromise the
primary objective of interfacial thermal transport investigations
using NEMD simulations.

Training MLIPs using interfacial supercells at the ab initio level
has enabled tackling the challenge of capturing interfacial interac-
tions in various semiconductor/semiconductor [100,113,139,150]
and metal/semiconductor interfaces [101,151] recently. Wyant
et al. combined the SNAP with a translationally invariant Taylor
expansion to study Ge/GaAs interface [113]. Chen et al. used the
NNP-NEMD approach to compare Si/Ge interfacial thermal con-
ductivity (ITC) with their experimental measurements [150].
NNP, neuroevolution potentials, and MTP were used to obtain
the thermal conductivities of heterostructures of Sb,Te;/BiyTes,
GeTe/SbyTe; and TiS;/MoS,, respectively [100,139,152].
Diamond is considered to be a future ultra-wide band gap
(UWBG) semiconductor [153], however, its ITR with metal con-
tacts is little known. Adnan et al. used the MTP to model metal/
diamond interfaces for candidate metals like Al, Mo, Zr, and Au
[151]. Khot et al. recently developed an NNP trained on both
bulk and interface supercells for the Al/Si interface [101]. As
shown in Fig. 3(d), their ITC estimates using NEMD simulations
are within 8% of the experimental consensus achieved in the last
decade. They use spectral analysis to demonstrate the interfacial
phonon modes and phonon local nonequilibrium at the interface
with the near-first-principles accuracy of the NNP-NEMD
simulations.

These studies have collectively demonstrated the utility of
various ML architectures for obtaining PES and performing molec-
ular simulations with near-first-principles accuracy. Although
MLIPs have proven clear advantages over classical EIPs, the pre-
diction errors and overfitting of ML models can lead to systematic
discrepancies in property predictions. This issue can be further
exacerbated, particularly for the lattice thermal conductivity
(LTC), which depends on the accurate prediction of interatomic
forces. Various MLIP-driven studies of high thermal conductivity
materials like CoSbs [116], Si [117], GaAs [154], and graphene
[154] have shown systematic underprediction of the LTCs com-
pared to experimental benchmarks. Wu et al. performed a systema-
tic study and concluded that the force prediction error is the
primary reason for the LTC underprediction [154]. They artificially
introduced force errors in NEMD simulations at various levels and
extrapolated the LTC at the limit of zero force error for c-Si, GaAs,
graphene, and PbTe. The resulting LTC values were found to be in
closer agreement with experimental results over a broad tempera-
ture range. Recently, Zhou et al. built on this previous work and
interpreted this LTC underestimation as a “pseudo-isotope
effect” which results in slightly higher phonon scattering [155].
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A second-order force correction term was introduced in their work
to improve the robustness and accuracy of LTC predictions.
Further work is needed to minimize such artifacts from MLIP pre-
dictions and to develop more optimized architectures that promote
faster and more reliable predictions.

4 Machine Learning for Solving
Radiative Heat Transfer

Radiative heat transfer refers to heat transfer due to the absorp-
tion and emission of electromagnetic waves, also known as
photons, which can occur across a broad wavelength spectrum.
Typically, thermal radiation considers the ultraviolet, visible, and
infrared bands from 0.1-um to 100-ym wavelength as highlighted
in Fig. 4(a))[156]. There are several fundamental mechanisms
inducing photon absorption and emission. For thermal radiation,
this is commonly due to electronic transitions at shorter wave-
lengths, and vibrational and rotational transitions in atomic bonds
at longer wavelengths [157]. Thermal radiation has significant
impacts across many fields and applications. Solar applications,
including solar power [158], solar heating [159], radiative
cooling [160], and climate modeling [161], clearly rely on solu-
tions to radiative heat transfer to model solar irradiation. Combus-
tion applications, including furnaces [162] and gas turbines [163],
require radiative heat transfer simulations due to the high temper-
ature (radiative heat transfer scales with temperature to the fourth
power) as well as the absorption and scattering induced by the
soot and particulates within the system. Space systems necessitate
radiative heat transfer simulations due to the near-zero conduction
in space, meaning radiation is the dominate heat transfer mecha-
nism [164], and to understand the impacts of Martian and Lunar
regolith coatings on radiators and spacecraft [165]. Laser
systems, such as for advanced manufacturing [166] and directed
energy weapons [167], utilize radiative transfer simulations to
understand heat load and safety under varying environmental con-
ditions. Fast, efficient, and reliable radiative heat transfer simula-
tion and modeling are critical to ensuring the advancement and
development of these applications.

We first overview the mainstream simulation methods for
thermal radiation. Since radiative heat transfer arises from electro-
magnetic waves, thermal radiation can be modeled with Maxwell’s
equations [157]. For simple geometries, analytical solutions exist,
which provide fast and accurate solutions. Common analytical solu-
tions include Mie theory [168], which describes incident radiation
on a homogenous sphere, and the transfer matrix method [169],
which can solve light propagation through multilayer plane-parallel
media. To model complex geometries, numerical methods are
required to solve Maxwell’s equations such as the finite-difference
method, finite volume method, or finite element method (FEM)
either in the time or frequency domain [170,171]. However, these
methods are tremendously computationally expensive for

(a) (b)

complex geometries due to strict meshing requirements. An alterna-
tive method for simulating radiative transfer is through the radiative
transfer equation (RTE), which is the typical approach for solving
radiative heat transfer problems [157]. The RTE treats light as inco-
herent, meaning it does not capture the wave effect of light, and
accounts for absorption, emission, and scattering or radiation.
Solving the RTE is computationally advantageous for macro-scale
geometries where the wavelength is significantly smaller than the
geometric feature sizes, or when the optical properties of small fea-
tures (e.g., nanoparticles) can be determined through experiment or
by simulating Maxwell’s equations on the individual feature.
Several analytical solutions of the RTE exist, such as Beer—Lam-
bert’s law for transmission through homogeneous absorbing
media [157]. For complex geometries, several numerical methods
exist, including surface to surface, discrete ordinates, spherical har-
monics, and Monte Carlo simulation [157]. Surface-to-surface
models are commonly applied when the medium between each
surface is not optically active, as it does not absorb, emit, or
scatter light. When the medium is optically active, such as CO,
gas or combustion soot in air, a more complex model is required
to account for absorption, emission, and scattering of light by the
medium. Discrete ordinates method, for example, discretizes the
angular domain as well as the spatial domain in conjunction with
a method like the finite volume method to model radiative transfer
between surfaces and within the optically active medium. While this
method is fast compared to other radiative transfer simulation
methods, it is more computationally expensive than other finite
volume methods utilized in computational fluid dynamics
(energy, momentum, etc.) [172]. This is due to the angular discreti-
zations requiring the discretized equation to be solved multiple
times at each cell. Alternatively, Monte Carlo simulations are also
commonly used to simulate radiative transfer within optically
active media [173,174]. Monte Carlo simulations, which stochasti-
cally model a large number of individual energy bundles, provide
several important benefits over other methods, including high accu-
racy, the ability to quantify error, and efficient parallelization.
However, Monte Carlo simulations are often considerably more
computationally expensive than methods such as discrete ordinates
[174]. Based on our discussion above, a common limitation of these
simulation methods is the computational cost for accurate solutions.

Various Al and ML methods have been implemented to over-
come these computational power limitations, including dense,
recurrent, convolutional, and physics-informed neural networks
Fig. 4(b)). Physics-informed neural networks (PINNs) have
become a popular tool for accelerating physics simulations [175-
178]. PINNs have a unique advantage over other ML models in
that they do not require training data generated by running other
numerical simulations, where additional error could be introduced.
Instead, since neural networks are readily differentiable, the loss
function can be the residual of Maxwell’s equations. For
example, Zhang et al. [179] trained a dense physics-informed
neural network (PINN) to predict the electric and magnetic fields
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where the loss function considers the initial conditions, boundary
conditions, and Maxwell’s equations simultaneously. Additionally,
Lim and MaxwellNet [180] (Fig. 5(a)) trained MaxwellNet, a
physics-informed U-net to predict the electric field through micro-
lenses. While using PINNs to solve Maxwell’s equations provides
many advantages, they also have disadvantages, such as the poor
generalizability to different geometries.

To accelerate solving RTE, several ML models have been
developed. For example, Carne et al. [181] (Fig. 5(b)) used a
dense neural network to predict the spectral response through
plane-parallel nanoparticulate media. Furthering this work, they
developed an recurrent neural network (RNN) to predict the spec-
tral response of multilayer plane-parallel media [186]. Stegmann
et al. [182] (Fig. 5(c)) used a dense neural network to predict
atmospheric transmittance based on the temperature, pressure,
humidity, and CO, profile. Furthermore, Kearney et al. [187]
developed DoseNet, a convolutional neural network (CNN) to
predict radiative transfer for dosimetry absorption maps. Each
of these studies uses ML to completely replace the radiative trans-
fer model it is trained on. Alternatively, there are ML models that
combine with traditional radiative transfer solvers to provide an
accelerated solution. Wu et al. [183] (Fig. 5(d)) used a residual
neural network to predict view factors in dense granular
systems. View factor calculations are a significant portion of
the computational expense in surface-to-surface radiative transfer
models, which are then used to calculate the radiative heat

transfer. Additionally, Peng et al. [184] (Fig. 5(e)) developed
MCDNet, a CNN for denoising dosimetry absorption maps.
This network takes in a low-resolution Monte Carlo solution
and increases accuracy through denoising, allowing for 76-fold
speedups over an equivalent high-resolution Monte Carlo
simulation.

So far, we have mainly discussed the “forward” problem, where
the geometry and material properties are given to solve the radia-
tive heat transfer. However, the inverse problem is regularly
required where the radiative transfer is known and either properties
or geometric features are solved for, such as the atmospheric
parameters [188] or tissue properties [189]. A common solution
technique for the inverse problem is to pair a traditional forward
solver with an optimization algorithm. The material property or
geometric feature is optimized until the predicted radiative transfer
closely matches the known solution. Due to this being an iterative
process, the inverse problem is considerably more computationally
expensive than the forward problem, making it an attractive target
for machine learning acceleration. For example, Kim et al. [190]
trained a tandem neural network to efficiently solve the inverse
problem to design nanoparticle-embedded radiative cooling films.
A tandem neural network trains both the forward and inverse radi-
ative transfer processes simultaneously based on training data from
the forward process, providing significant time savings compared
to traditional methods. Furthermore, Himes et al. [185]
(Fig. 5(f)) used a CNN to accelerate the inverse process of
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determining atmospheric properties of exoplanets based on a mea-
sured spectrum, providing a 9-fold speedup compared to traditional
methods.

5 Machine Learning-Assisted Design of Thermal
Radiative Energy Devices

In the last section, we discussed using ML to directly solve the
governing equations of radiative heat transfer. In this section, we
discuss how to leverage those surrogate models to enable inverse
design and optimization of functional thermal radiative devices.
The design of thermal radiative energy devices is a rapidly
growing field with critical applications in radiative cooling
[160,191-193], thermophotovoltaics [194], thermal -cloaking
[195,196], imaging [197,198], and energy harvesting [199-201].
These devices rely on precise control of thermal radiation, which
can be achieved by tailoring their structure and material properties
to emit, absorb, or reflect specific wavelengths of thermal radiation.
However, the design of such devices often relies heavily on human
intuition, trial-and-error experimentation, or exhaustive parameter
sweeps, all of which are computationally expensive and time-
consuming. As the complexity of device design increases, these
conventional approaches struggle to explore the vast design
space effectively. Machine learning has emerged as a powerful
tool for efficiently navigating such large design spaces, which
would reduce computational costs and discover novel device archi-
tectures that would be difficult to identify using traditional methods
[202]. ML-assisted design of thermal radiative energy devices gen-
erally falls into two main categories: optimization-based design
and generative design approach. Both approaches leverage
advanced ML algorithms to reduce computational complexity
and improve design precision.

5.1 Optimization-Based Approach. In the optimization-
based approach, the design of thermal radiative devices is formu-
lated as an optimization task where the device’s structure, material
composition, and geometric features are the design variables. The
objective of this approach is to minimize the difference between the
actual radiative properties of the device and the ideal target prop-
erties. These properties typically include emissivity, absorptivity,
and reflectivity at specific wavelengths or across specific spectral
ranges. Optimization techniques such as Bayesian optimization
[203,204], genetic algorithms [205,206], and quantum annealing
[207,208] have proven to be highly effective for this purpose.
Given that physics-based simulations of thermal radiation, such
as finite-difference time domain and FEM, are computationally
expensive, ML surrogates are frequently employed. These surro-
gate models approximate the relationship between device configu-
rations and their radiative properties. Once trained, they can predict
the properties of new configurations much faster than rigorous sim-
ulations. For example, Hu et al. [209] developed a machine
learning-based Monte Carlo tree search algorithm to optimize a
Tamm emitter, targeting improved power density and system effi-
ciency of the thermophotovoltaic (TPV) system (Fig. 6(a)). Similar
work has also been performed by Bohm et al. [215] for a tungsten
emitter using a deep learning model to save the computational cost
of rigorous coupled-wave analysis calculation. Li et al. [210]
developed a deep reinforcement learning-based inverse design
framework for photonic crystal design for nanoscale laser cavities
(Fig. 6(b)). Carne et al. [205] developed a BaSO,-based radiative
cooling paint with maximized solar reflectivity. By training a
neural network-based surrogate model to predict radiative proper-
ties [181,216], they replaced complex Monte Carlo simulations,
leading to significant computational speedups of the evolutionary
algorithm optimization process.

5.2 Generative Model Approach. Generative design frame-
works take a different approach, aiming to directly produce
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configurations of thermal radiative devices that meet specific
design criteria. Typical generative machine learning models
include autoencoder [217], generative adversarial networks
(GANSs) [218], variational autoencoders (VAEs) [219-221], and
diffusion models [222-225]. Unlike optimization methods, which
search for optimal configurations from a predefined design space,
generative models directly generate device structures with
desired properties, bypassing the need for an explicit search
process. For example, Peurifoy et al. [211] developed a fully con-
nected NN for designing core—shell particles with target
wavelength-dependent scattering properties (Fig. 6(c)). The input
is set as the diameter and thickness of core—shell particles, and
the output is set as the scattering cross section at discrete wave-
lengths. The result shows a good reproduction of the desired prop-
erties. Liu et al. [212] presented a tandem neural network to design
a multilayer thin film composed of SiO, and SizNy4 to obtain the
target transmission spectrum (Fig. 6(d)). They claimed that com-
bining forward modeling and inverse design in a tandem architec-
ture could overcome data inconsistency issues, thereby
accelerating the training speed of deep neural networks. Guan
et al. [226] also applied a tandem neural network for the inverse
design of radiative cooling material. The structure enables high
solar transmittance, strong mid-infrared emissivity, and customiz-
able visible colors. Liu et al. [213] developed a diffusion model for
the inverse design of thermal metamaterials to enhance thermal
transparency (Fig. 6(e)). Ignuta-Ciuncanu et al. [214] developed
a variational autoencoder model for the design of macroscopic
thermal metamaterials. A genetic optimizer is used to explore the
latent design space to achieve the temperature and heat flux
design goals (Fig. 6(f)). Garcia-Esteban et al. [227] employ condi-
tional Wasserstein GANs to generate synthetic spectral data for
near-field radiative systems, enabling improved modeling accuracy
in low-data regimes.

6 Challenges and Future Directions

Despite remarkable progress in applying Al to nanoscale heat
conduction and radiation, several challenges and limitations
remain. A key bottleneck is the lack of high-quality, standardized
datasets. Unlike fields such as computer vision or natural language
processing, thermal sciences lack large-scale annotated datasets
necessary for training robust supervised learning models. Encour-
agingly, recent efforts are helping to bridge this gap. For example,
databases of phonon band structures [228], anharmonic phonon
properties [229], and spectral radiative properties [230], along
with large-scale initiatives such as the Materials Project [231],
JARVIS [232], OQMD [233], and AFLOW [234], are increasingly
becoming valuable resources for Al model training and validation.
Moving forward, the development of benchmark datasets for prop-
erties like thermal conductivity and refractive and extinction coef-
ficients will be critical for enabling systematic model comparison
and accelerating algorithmic innovation. Besides, techniques that
can learn effectively from limited data are gaining importance.
Multifidelity modeling [35,235] is one such approach. The core
principle is to strategically combine datasets from sources of
varying accuracy and computational cost. The model is trained pri-
marily on a large volume of “low-fidelity” data, which is computa-
tionally cheap to generate (e.g., from empirical potentials,
simplified physical models, or less converged first-principles calcu-
lations). This large dataset allows the model to learn the broad
trends and fundamental relationships within the design space. Sub-
sequently, a much smaller and more precious set of “high-fidelity”
data, derived from highly accurate simulations and experiments, is
used to refine, correct, and calibrate the model. By learning the dis-
crepancy between the low- and high-fidelity predictions, the final
model can achieve accuracy approaching that of the high-fidelity
method with a limited amount of data.

Another challenge is the generalization capabilities of current
models. Many Al models are trained on narrow domains with
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specific materials, geometries, or thermal conditions, which limits
their applicability to new settings. Enhancing model generality and
transferability is therefore a key research priority. For example,
universal machine-learned interatomic potentials are being devel-
oped to capture diverse behaviors across chemical compositions
and structures. The idea of foundational models is also gaining
interest in the materials community. Similar to large pretrained
models in natural language processing, these models aim to learn
general representations of material structures, which can then be
fine-tuned for specific tasks such as thermal conductivity or radia-
tive property prediction [236-239]. There has already been work
on using these models for finding high thermal conductivity mate-
rials [240].

For real-world Al deployment, particularly in safety-critical or
high-precision thermal applications, rigorous uncertainty quantifi-
cation (UQ) is essential. Instead of a single point-value prediction,
UQ methods yield a predictive distribution, effectively placing
“error bars” on the output. This is vital for understanding how
much trust should be placed in its predictions for engineering
design and risk analysis. Gaussian processes offer a principled
way to quantify predictive uncertainty [241,242], though they
often do not scale well to large or high-dimensional datasets. As
alternatives, deep learning approaches such as Bayesian neural net-
works [243-245] and dropout-based techniques [246] have been
adopted for scalable uncertainty estimation. Interpretability is
another crucial issue. While deep neural networks have demon-
strated powerful predictive capabilities, they are often criticized
for their lack of transparency. Improving model interpretability is
not only important for trust and verification but can also lead to
new scientific insights [247,248]. Techniques such as symbolic
regression [249] can help to illuminate the underlying physical prin-
ciples captured by Al models. Unlike standard regression, which fits
data to a predefined equation (e.g., a line or polynomial), symbolic
regression explores a vast space of mathematical expressions to dis-
cover the optimal functional form that describes the data. Instead of
a black box model, we obtain a simple, human-understandable ana-
lytical equation that can reveal novel physical correlations or even
approximate underlying physical laws.

7 Conclusions

In this review, we have highlighted selected recent advances in
Al-driven nanoscale heat conduction and radiation. We began
with machine learning predictions of phonon properties, including
phonon dispersion and scattering. We then explored machine learn-
ing interatomic potentials and their application to thermal transport
in both bulk and interfacial materials. Next, we discussed Al
approaches to radiative heat transfer, including solving Maxwell’s
equations and the radiative transfer equation, as well as accelerat-
ing the inverse design of thermal radiative devices. Finally, we pre-
sented open challenges and promising future directions—focusing
on data, generalization, uncertainty quantification, and interpret-
ability—that we see as robust opportunities to continue the
embrace of Al into thermal transport research.
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