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Accurately predicting phonon scattering is crucial for understanding thermal transport

properties. However, the computational cost of such calculations, especially for four-

phonon scattering, can often be more prohibitive when large number of phonon branches

and scattering processes are involved. In this work, we present FourPhonon_GPU, a GPU-

accelerated framework for three-phonon and four-phonon scattering rate calculations based

on the FourPhonon package. By leveraging OpenACC and adopting a heterogeneous

CPU–GPU computing strategy, we efficiently offload massive, parallelizable tasks to the

GPU while using the CPU for process enumeration and control-heavy operations. Our ap-

proach achieves over 25× acceleration for the scattering rate computation step and over

10× total runtime speedup without sacrificing accuracy. Benchmarking on various GPU

architectures confirms the method’s scalability and highlights the importance of aligning

parallelization strategies with hardware capabilities. This work provides an efficient and

accurate computational tool for phonon transport modeling and opens pathways for accel-

erated materials discovery.
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I. INTRODUCTION

Thermal conductivity is a fundamental material property that plays a critical role in a wide

range of applications, including thermal management in electronic devices1,2, thermoelectric en-

ergy conversion3,4, etc. Understanding and accurately predicting thermal conductivity is essential

for optimizing material performance. The primary heat carriers in dielectrics and semiconductors

are phonons. Phonon scattering rates, which limit the phonon mean free paths, are the central

mechanism for determining thermal conductivity5. Accurately predicting phonon scattering rates

is therefore key to predicting thermal transport behavior in materials.

Recent advances in first-principles calculations of phonon scattering coupled with Boltzmann

transport equation (BTE) have enabled accurate, parameter-free predictions of lattice thermal con-

ductivity. The theoretical foundation for phonon BTE was first laid by Peierls6. Later, Maradudin

et al.7 developed a comprehensive framework for three-phonon (3ph) scattering. Broido et al.8

further combined ab initio force constants with these approaches, leading to robust first-principles

predictions of thermal conductivity. It was believed for decades that 3ph scattering is adequate for

describing thermal transport except at very high temperatures. Moreover, the general theory and

computational method for four-phonon (4ph) scattering were lacking, preventing quantitative eval-

uation of its role. Feng and Ruan9,10 developed the general theory and computational method for

4ph scattering, demonstrating that 4ph processes can significantly impact the thermal conductivity

of many materials, at elevated temperatures or even room temperature. Their theoretical predic-

tions for boron arsenide (BAs) were later confirmed experimentally11–13, proving that four-phonon

scattering is a critical factor in thermal transport.

While first-principles calculations have greatly improved the fundamental understanding of

thermal transport, they are extremely computationally expensive when including 4ph scattering.

The high cost arises from the need to enumerate and compute a large number of phonon scattering

processes, which scale as N3 and N4 for 3ph and 4ph scattering, respectively (N is the number

of q-points in the Brillouin zone). This leads to a dramatic increase in computational complexity.

For example, for a silicon calculation using a 16×16×16 q-mesh (discretized grid in the recipro-

cal space), there are approximately 9.0×105 and 7.6×109 processes for 3ph and 4ph scattering,

respectively, which could take over 7000 CPU hours to calculate.

To address the high or even prohibitive computational cost, several approaches have been ex-

plored, including machine learning surrogates14,15 and statistical sampling methods16. These tech-
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niques have been successfully applied to estimate thermal and radiative properties of solids17–24.

Although these methods dramatically reduce computational cost, they achieve this by introducing

approximations that sacrifice some degree of accuracy. As a result, they are particularly useful

for applications where a certain level of error is acceptable. However, in scenarios that require

rigorous and fully resolved calculations of every scattering process, such approximate methods

are inadequate.

An alternative path for improving computational efficiency is leveraging hardware accelera-

tion through Graphics Processing Units (GPUs). Originally developed for rendering computer

graphics, GPUs have evolved as a powerful tool for scientific computing25, machine learning26–28,

and high-performance simulations29 due to their massively parallel architecture. With thousands

of cores capable of executing millions of lightweight threads simultaneously, GPUs are ideally

suited for workloads that involve a large number of independent operations30. The advantage of

GPUs has already been demonstrated across various fields of atomistic simulations. Popular first-

principles simulation packages such as Abinit31 and VASP32,33 have incorporated GPU support,

achieving orders-of-magnitude acceleration over traditional CPU implementations. In the con-

text of phonon scattering calculations, Wei et al.34 first identified the performance bottlenecks in

ShengBTE35 and offloaded the scattering rate calculations onto GPUs. Building on this foundation,

Zhang et al.36 developed the GPU_PBTE package, which employed a two-kernel strategy to further

accelerate phonon scattering calculations. It is shown that under the relaxation time approxima-

tion (RTA), each phonon scattering process is fully decoupled and can be independently evaluated,

making the problem highly suitable for GPU parallelization.

In this work, we develop a GPU-accelerated framework for both 3ph and 4ph phonon scat-

tering calculations by combining CPU-based preprocessing with GPU-based large-scale parallel

computing. Starting from the original FourPhonon37 package, we adopt OpenACC to enable

GPU acceleration with minimal code restructuring. However, due to the challenges of divergent

branching, direct GPU offloading alone is insufficient to achieve optimal performance. To over-

come these limitations, we propose a heterogeneous CPU–GPU computing scheme, in which the

CPU enumerates momentum- and energy-conserving scattering processes, and the GPU efficiently

evaluates the corresponding scattering rates in parallel (Fig. 1). In addition, we implement sev-

eral optimization techniques to enhance parallelism and further improve computational efficiency.

Through systematic comparisons, we demonstrate that our method preserves the full accuracy of

the original calculations while achieving over 25× acceleration for the scattering rate computa-
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tion step and over 10× total speedup. Our work establishes an efficient and scalable pathway for

rigorous phonon scattering calculations on modern high-performance computing architectures.

FIG. 1. Workflow of CPU-GPU heterogeneous computing.

II. METHODOLOGY

The original ShengBTE35 and FourPhonon37 packages are written in Fortran and parallelized

using MPI, optimized for CPU-based high-performance computing environments. To enable GPU

acceleration with minimal code restructuring and maximize cross-platform portability, we adopt

OpenACC, a directive-based programming model designed to simplify the development of hetero-

geneous applications targeting both CPUs and GPUs. Since the phonon scattering processes are

independent of each other, there are no loop-carried dependencies and the task is highly suitable

for GPU calculation. This computational pattern aligns well with the Single Instruction, Multiple

Threads (SIMT) execution model of GPUs, where thousands of lightweight threads execute the

same instruction on different data. As a result, the calculation of scattering rates across different

scattering channels can be efficiently mapped onto parallel GPU threads.

To illustrate our GPU acceleration strategy, we use the 3ph absorption process as an example,

with detailed pseudocode provided in the Appendix. In the original CPU implementation (Algo-

rithm 1 in the Appendix), the code loops over all phonon modes in a driver function, where each
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iteration calls a subroutine to evaluate the scattering rate for an individual mode. This subroutine

performs nested loops over all possible combinations of phonon wavevectors and branches. Energy

conservation checks are conducted to filter out forbidden scattering processes before computing

the weighted phase space (WP) and scattering rate (Γ). Due to the vast number of phonon combi-

nations, this calculation is computationally expensive. Our first strategy is directly offloading the

entire computation to the GPU (see Algorithm 2 in the Appendix). All necessary data is preloaded

into GPU memory to avoid host-device data transfer overhead during runtime. After GPU com-

putation, the results are transferred back to CPU memory, and GPU memory is released. We

parallelize over all possible scattering processes and, beyond that, across multiple phonon modes

simultaneously to enhance concurrency. This all-modes parallelization approach outperforms the

mode-by-mode parallelization used in prior GPU implementations34,36 (see Algorithm 5), offering

higher levels of parallelism and improved speedup while having higher GPU memory cost. Both

of these methods are implemented, and a comparison is provided in the Results section.

However, directly applying OpenACC directives to existing MPI-based Fortran code is insuffi-

cient due to architectural differences between CPUs and GPUs. Several optimizations have been

implemented to make the code GPU-compatible and efficient. First, we apply loop flattening using

the collapse clause to combine nested loops and expose more parallelism within each phonon

mode. Second, the loop order is rearranged to achieve memory coalescing, allowing consecutive

threads to access contiguous memory locations, which improves memory access efficiency. Third,

we inline the computations for the broadening factor (σ ) and the matrix element (Vp) to avoid the

overhead of function and subroutine calls on the GPU. Finally, the accumulation of the scattering

rate and weighted phase space is handled using the reduction clause, which efficiently manages

parallel updates and avoids race conditions, outperforming the use of atomic operations.

While this direct GPU-offloading approach preserves the original CPU workflow and achieves

acceleration, it shows performance degradation due to divergent branching. Specifically, condi-

tional statements used to check energy conservation introduce warp divergence, which undermines

the efficiency of the SIMT execution. In our scenario, threads associated with forbidden scatter-

ing processes stall while others continue, leading to serialization and reduced throughput. Given

the sparsity of allowed scattering processes, this divergence leads to significant underutilization

of GPU resources (Fig. 2 upper figure). This problem has also been reported in prior work36.

Moreover, for 4ph scattering calculations, symmetry considerations restrict the iteration domain

to a triangular region (see Fig. 3). However, OpenACC’s collapse directive requires rectangu-
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lar iteration domains, preventing the use of symmetry conditions on GPUs and further impacting

performance.

FIG. 2. GPU-only vs. CPU+GPU heterogeneous computing. The GPU-only approach suffers from

warp divergence due to conditional branching when filtering forbidden phonon scattering processes, leading

to reduced computational efficiency. In contrast, the CPU+GPU heterogeneous strategy first filters and

prepares valid scattering processes on the CPU, allowing the GPU to execute the computation with higher

parallel efficiency.

To address these limitations, we further propose a hybrid CPU–GPU computing framework

that partitions the workload between CPU and GPU (Fig. 2 lower figure). In this scheme, the CPU

is responsible for enumerating all symmetry-allowed and energy-conserving scattering processes,

as described in Algorithm 3. Once the allowable scattering process indices are generated, they

are transferred to the GPU. The GPU then performs the expensive scattering rate calculations in

parallel, following Algorithm 4. By transferring only the relevant scattering events, we elimi-

nate divergent branching on the GPU and ensure maximum occupancy of GPU resources during

computation. Although this hybrid approach introduces additional CPU overhead for process enu-

meration, it significantly reduces the computational cost associated with scattering rate evaluations
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FIG. 3. Triangular iteration region due to symmetry.

and improves overall efficiency. In the Results section, we provide a detailed comparison between

the CPU-only, GPU-only, and hybrid schemes, demonstrating the performance advantages of the

proposed heterogeneous workflow. In our open source code, we adopted the hybrid approach for

phonon scattering calculation.

III. RESULTS

The performance of both the original and GPU-accelerated codes is evaluated using silicon as a

benchmark material. All calculations are performed at 300 K under RTA for both 3ph and 3ph+4ph

scattering processes. The broadening factor is chosen as 0.1 for 3ph+4ph calculation following

our previous work37. Simulations are carried out on the Gilbreth cluster at Purdue University’s

Rosen Center for Advanced Computing (RCAC). The software and hardware configurations are

summarized in Table I.

TABLE I. Experimental hardware and software configurations

Item Description

CPU AMD EPYC 7543 32-Core Processor

GPU Primary: NVIDIA A100 (80GB) GPU. Tests: NVIDIA A10, A30 GPUs

Compiler (GPU) NVIDIA HPC Compiler (nvc 23.5-0)

CUDA Version CUDA 12.6.0

Compiler (CPU) Intel OneAPI Compilers 2024.2.1

MPI Version Intel MPI 2021.13

For CPU-only calculations, parallel computing is performed with 32 CPU cores since the wall
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time for serial computing is impractical. The reported time is CPU time, which represents the

summed computational time over all cores. For GPU-accelerated calculations, the simulations are

performed using one CPU core and one GPU, and the reported runtime is the sum of the CPU and

GPU computation times. The relative difference in the calculated thermal conductivity between

CPU-only and GPU-accelerated runs is less than 0.1%, which is primarily attributed to minor

numerical variations between different compilers. These results confirm that GPU acceleration

does not compromise the accuracy of the original code.

We first analyze the acceleration achieved by our CPU-GPU heterogeneous computing imple-

mentation. Figure 4 shows a comparison of the total computational cost between the original

CPU-based method and the CPU-GPU hybrid version across different q-mesh densities. For all

tested q-meshes, we observe a consistent acceleration of over 10× for both 3ph and 3ph+4ph

scattering calculations. Note that this computational time includes not only the phonon scattering

step but also other computational overheads that are inherently performed on the CPU, such as the

calculation of harmonic properties, phonon phase space, and the post-processing steps. If we only

consider the computational cost of the CPU+GPU phonon scattering calculation step, we observe

even more substantial speedups of over 18× and over 25× for 3ph and 4ph scattering rate calcu-

lation, which is shown in the insets of Fig 4. We are expecting to see an even higher acceleration

rate if we set the broadening factor to unity for the 3ph+4ph calculation. These results clearly

demonstrate the effectiveness of our GPU acceleration strategy.

FIG. 4. Comparison of total computational cost between CPU-only and CPU-GPU hybrid implemen-

tations across different q-mesh sizes. (a) 3ph scattering, (b) 3ph+4ph scattering. The insets show the

isolated computational cost of the 3ph and 4ph scattering step alone.
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We then compare two GPU parallelization strategies for phonon scattering calculations: mode-

by-mode parallelization (where each phonon mode is processed independently) and all-modes

parallelization (where all scattering processes are computed collectively). Figure 5(a) shows the

comparison for representative cases. Note that for 4ph scattering, we choose a smaller q-mesh size

to illustradue to the large computational cost, but the trend would be similar for large mesh size.

We observe that all-modes parallelization leads to additional acceleration of 21% and 9% for the

3ph scattering case with a 32×32×32 q-mesh and 3ph+4ph with 10×10×10 q-mesh, respectively.

This performance gain is due to two factors: (1) enhanced parallelism enabled by concurrent exe-

cution of all scattering processes, and (2) reduced overhead in transferring data between CPU and

GPU memory by avoiding frequent host–device memory traffic. However, this gain comes with

a trade-off. As shown in Fig. 5(b), preloading all scattering processes into GPU memory signif-

icantly increases the GPU memory cost. For dense q-meshes, this demand may exceed available

GPU memory. This is the case for the 3ph+4ph calculation at a 16×16×16 mesh, which could not

be completed using the all-modes strategy due to excessive memory usage (>80 GB). To address

this, we fall back to the mode-by-mode parallelization approach for the 16×16×16 case. While

the computational efficiency is reduced, it still enables a notable acceleration of approximately

7× compared to the original CPU-based implementation (Fig. 5(c)). This trade-off between mem-

ory usage and speed highlights the importance of selecting an appropriate parallelization strategy

based on problem size and hardware constraints.

We further compared our CPU–GPU hybrid method with a GPU-only implementation, as il-

lustrated in Fig. 6. For the 3ph scattering calculation with a 32×32×32 q-mesh, while both ap-

proaches are faster than the CPU-only baseline, the CPU–GPU hybrid approach achieves a 5×

speedup over the GPU-only method. Moreover, for the 3ph+4ph calculation using a q-mesh of

10×10×10, the GPU-only implementation is about twice as slow as the CPU-only baseline. This

degradation is primarily due to the sparsity of the 4ph scattering matrix, which results in severe

warp divergence and significantly reduces parallel efficiency. These results further demonstrate

the effectiveness of our heterogeneous computing strategy by using the GPU for highly parallel

workloads while using CPU for irregular, branching-heavy operations.

Finally, we evaluated the performance of our method on different GPU architectures. Since

FourPhonon relies on double-precision arithmetic (FP64), the performance is strongly influenced

by the available FP64 floating-point operations per second (FLOPS) on the GPU. Specifically, we

tested three NVIDIA GPUs: A100, A30, and A10. The key specifications of these GPUs, includ-
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FIG. 5. Comparison between all-modes and mode-by-mode parallelization strategies. (a) Computa-

tional cost and (b) GPU memory usage for 3ph and 3ph+4ph scattering calculations using a q-mesh of

32×32×32 and 10×10×10, respectively. (c) Computational cost for 3ph+4ph scattering with a 16×16×16

q-mesh, comparing CPU-only and CPU-GPU with mode-by-mode parallelization implementations.

FIG. 6. Comparison between CPU–GPU hybrid and GPU-only implementations. (a) 3ph scattering

with q-mesh of 32×32×32, (b) 3ph+4ph scattering with q-mesh of 10×10×10.

ing memory capacity and peak FLOPS for both single-precision (FP32) and FP64 operations, are

summarized in Table II. To isolate GPU performance, we measured only the execution time of

the GPU kernel, excluding CPU-side overheads. We observe that A100 > A30 > A10 in terms

of computational speed for our double-precision workloads (Fig. 7), which is consistent with the

FP64 FLOPS ranking. Since the A10 is optimized for FP32 workloads and has significantly lower

FP64 performance, it is less suitable for scientific computing applications and shows a substan-
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tial performance drop in our task. Additionally, the A100’s larger memory capacity provides an

advantage in dense q-mesh scenarios. For example, in the case of a 14×14×14 q-mesh with all-

modes parallelization strategy, the total GPU memory requirement will be approximately 63 GB.

This exceeds the memory capacity of the A10 and A30, which therefore will have to fall back to

mode-by-mode parallelization, sacrificing performance to stay within hardware limitations. These

results highlight the importance of selecting GPU hardware that matches the computational preci-

sion and memory demands of the targeted simulation workload.

FIG. 7. Comparison of GPU kernel time on different NVIDIA GPUS (A10, A30, A100). (a) 3ph

scattering, (b) 4ph scattering.

TABLE II. Specifications of selected NVIDIA GPUs used in this work.

GPU Model FP32 Performance (TFLOPS) FP64 Performance (TFLOPS) Memory (GB)

A100 19.5 9.7 80

A30 10.3 5.2 24

A10 31.2 0.39 24

There are several directions for further improving the performance. Currently, our method is

limited to the RTA due to the high memory cost and the overhead associated with data transfer

between CPU and GPU memory. Future work could involve extending the framework to support

iterative solvers. Besides, combining the GPU with the sampling-estimation-based approaches16

would further reduce both time and memory cost. In addition, the enumeration step on the CPU

and the parallel computing step on the GPU are executed sequentially. Introducing asynchronous

operations to overlap the CPU and GPU calculations could further reduce total runtime. Lastly,
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while our implementation focuses on double-precision arithmetic for accuracy, it is worth not-

ing that many modern GPUs, particularly those optimized for machine learning workloads, have

significantly higher performance in single-precision computations. Exploring the use of mixed-

precision or single-precision approaches, where appropriate, could yield additional performance

gains without compromising accuracy for certain tasks.

In conclusion, we developed FourPhonon_GPU, a GPU-accelerated framework for phonon scat-

tering calculations using a CPU–GPU heterogeneous computing strategy. By offloading highly

parallel tasks to the GPU and retaining enumeration and control-heavy operations on the CPU,

our approach achieves substantial speedups, with over 10× improvement in total runtime and over

25× acceleration in the scattering rate calculation step. With comprehensive benchmarking tests,

we demonstrated the effectiveness of this framework and highlighted the importance of aligning

algorithm design with hardware capabilities. This work provides an efficient computational tool

for evaluating materials’ thermal properties and paves the way for accelerating materials discovery.
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IV. APPENDIX

Algorithm1 Original CPU-based computation of three-phonon scattering process (absorption process)
1: Initialize global arrays: rate_scatt_plus(Nbands,Nlist ), WP3_plus_array(Nbands,Nlist )

2: for mm = 1 to Nbands*Nlist do

3: // Subroutine: compute scattering for mode mm

4: Get i, ll from mm

5: Get q, ω , v from i, ll

6: Initialize WP3plus← 0, Γplus← 0

7: for j = 1 to Nbands do

8: for ii = 1 to nptk do

9: Get q′, ω ′, v′ from j, ii

10: f ′← BE(ω ′)

11: for k = 1 to Nbands do

12: q′′←modulo(q+q′,Ngrid)

13: Get ss from q′′, get ω ′′, v′′ from ss,k

14: f ′′← BE(ω ′′)

15: σ ← compute_sigma(v′− v′′)

16: if |ω +ω ′−ω ′′| ≤ 2σ then

17: WP←
( f ′− f ′′)·exp

[
− (ω+ω ′−ω ′′)2

σ2

]
σ
√

π·ωω ′ω ′′

18: WP3plus←WP3plus +WP

19: Vp← compute_Vp(. . .)

20: Γplus← Γplus +WP · |Vp|2

21: end if

22: end for

23: end for

24: end for

25: rate_scatt_plus(i, ll)← Γplus

26: WP3_plus_array(i, ll)←WP3plus

27: // End subroutine

28: end for

29: WP3_plus_array←WP3_plus_array/nptk

30: rate_scatt_plus← rate_scatt_plus · const/nptk ▷ Unit conversion13



Algorithm2 GPU-only-based computation of three-phonon scattering process (absorption process)
1: Initialize global arrays: rate_scatt_plus(Nbands,Nlist ), WP3_plus_array(Nbands,Nlist )

2: GPU: Copy data from host to device memory

3: // GPU: Launch parallel loop

4: for mm = 1 to Nbands×Nlist do

5: Get i, ll from mm ▷ Inlined original subroutine for higher efficiency

6: Get q, ω , v from i, ll

7: Initialize WP3plus← 0, Γplus← 0

8: // GPU: Launch parallel loop, collapse(3), reduction over Γplus, WP3plus

9: for ii = 1 to nptk do

10: for j = 1 to Nbands do ▷ Reordered for memory coalescing

11: for k = 1 to Nbands do ▷ Rearranged for GPU loop collapsing

12: Get q′, ω ′, v′ from j, ii

13: q′′←modulo(q+q′,Ngrid)

14: Get ss from q′′, get ω ′′, v′′ from ss,k

15: f ′← BE(ω ′), f ′′← BE(ω ′′)

16: // GPU: parallel loop, reduction over σ

17: σ ← inline_compute_sigma(v′− v′′) ▷ Avoid function call for GPU efficiency

18: if |ω +ω ′−ω ′′| ≤ 2σ then ▷ Divergent branching on GPU

19: WP←
( f ′− f ′′)·exp

[
− (ω+ω ′−ω ′′)2

σ2

]
σ
√

π·ωω ′ω ′′

20: WP3plus←WP3plus +WP

21: Vp← inline_compute_Vp(. . .) ▷ Avoid function call for GPU efficiency

22: Γplus← Γplus +WP · |Vp|2

23: end if

24: end for

25: end for

26: end for

27: rate_scatt_plus(i, ll)← Γplus, WP3_plus_array(i, ll)←WP3plus

28: end for

29: WP3_plus_array←WP3_plus_array/nptk

30: rate_scatt_plus← rate_scatt_plus · const/nptk ▷ Unit conversion

31: GPU: Copy data from device to host memory
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Algorithm3 CPU-based precomputing of three-phonon scattering process indices (absorption process)
1: // CPU: Enumerate of all allowed scattering processes

2: Compute cumulative offset array Naccum_plus from Nplus

3: Initialize global arrays: Ind2all(sum(Nplus)), Ind3all(sum(Nplus))

4: for mm = 1 to Nbands×Nlist do

5: Get Nplus from mm

6: Get i, ll from mm

7: Get q, ω , v from i, ll

8: Initialize Nplus_count← 0

9: Initialize arrays Ind2(Nplus), Ind3(Nplus)

10: for ii = 1 to nptk do

11: for j = 1 to Nbands do ▷ Reordered for memory coalescing

12: Get q′, ω ′, v′ from j, ii

13: for k = 1 to Nbands do

14: q′′←modulo(q+q′,Ngrid)

15: Get ss from q′′, get ω ′′, v′′ from ss,k

16: σ ← compute_sigma(v′− v′′)

17: if |ω +ω ′−ω ′′| ≤ 2σ then

18: Nplus_count← Nplus_count +1

19: Ind2(Nplus_count)← (ii−1) ·Nbands + j ▷ Detect possible scattering processes

20: Ind3(Nplus_count)← (ss−1) ·Nbands + k ▷ Detect possible scattering processes

21: end if

22: end for

23: end for

24: end for

25: Copy Ind2 to Ind2all at Naccum_plus(mm)+1

26: Copy Ind3 to Ind3all at Naccum_plus(mm)+1

27: end for
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Algorithm4 GPU-based computation of three-phonon scattering process using precomputed indices (ab-

sorption process)
1: GPU: Copy data from host to device memory

2: Compute cumulative offset array Naccum_plus from Nplus

3: // GPU: Launch parallel loop

4: for mm = 1 to Nbands×Nlist do

5: Get i, ll from mm

6: Get q, ω from i, ll

7: Initialize Γplus← 0, WP3plus← 0

8: // GPU: Launch parallel loop, reduction over Γplus, WP3plus

9: for ind from Naccum_plus(mm)+1 to Naccum_plus(mm)+Nplus(mm) do

10: Get phonon indices: ( j, ii),(k,ss) from Ind2, Ind3

11: Get q′, ω ′ from j, ii

12: q′′←modulo(q+q′,Ngrid)

13: Get ω ′′ from k,ss

14: // GPU: parallel loop, reduction over σ

15: Compute σ ← inline_compute_sigma(v′− v′′) ▷ Avoid function call for GPU efficiency

16: Compute f ′← BE(ω ′), f ′′← BE(ω ′′)

17: WP←
( f ′− f ′′)·exp

[
− (ω+ω ′−ω ′′)2

σ2

]
σ
√

π·ωω ′ω ′′

18: WP3plus←WP3plus +WP

19: Vp← inline_compute_Vp(. . .) ▷ Avoid function call for GPU efficiency

20: Γplus← Γplus +WP · |Vp|2

21: end for

22: rate_scatt_plus(i, ll)← Γplus

23: WP3_plus_array(i, ll)←WP3plus

24: end for

25: WP3_plus_array←WP3_plus_array/nptk

26: rate_scatt_plus← rate_scatt_plus · const/nptk ▷ Unit conversion

27: GPU: Copy data from device to host memory
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Algorithm5 GPU-based, mode-wise computation of three-phonon scattering process using precomputed

indices (absorption process)
1: Compute cumulative offset array Naccum_plus from Nplus

2: for mm = 1 to Nbands×Nlist do

3: Get i, ll from mm

4: Get q, ω from i, ll

5: Initialize Γplus← 0, WP3plus← 0

6: Copy mode-mm data in Ind2, Ind3 from host to device memory ▷ Only copy mode-mm for memory saving

7: // GPU: Launch parallel loop, reduction over Γplus, WP3plus

8: for ind from Naccum_plus(mm)+1 to Naccum_plus(mm)+Nplus(mm) do

9: Get phonon indices: ( j, ii),(k,ss) from Ind2, Ind3

10: Get q′, ω ′ from j, ii

11: q′′←modulo(q+q′,Ngrid)

12: Get ω ′′ from k,ss

13: // GPU: parallel loop, reduction over σ

14: Compute σ ← inline_compute_sigma(v′− v′′) ▷ Avoid function call for GPU efficiency

15: Compute f ′← BE(ω ′), f ′′← BE(ω ′′)

16: WP←
( f ′− f ′′)·exp

[
− (ω+ω ′−ω ′′)2

σ2

]
σ
√

π·ωω ′ω ′′

17: WP3plus←WP3plus +WP

18: Vp← inline_compute_Vp(. . .) ▷ Avoid function call for GPU efficiency

19: Γplus← Γplus +WP · |Vp|2

20: end for

21: Copy Γplus and WP3plus of mode-mm from device to host memory

22: rate_scatt_plus(i, ll)← Γplus

23: WP3_plus_array(i, ll)←WP3plus

24: end for

25: WP3_plus_array←WP3_plus_array/nptk

26: rate_scatt_plus← rate_scatt_plus · const/nptk ▷ Unit conversion
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