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Anisotropic anharmonicity dictates the thermal conductivity of β-Ga2O3
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β-Ga2O3 is a promising material candidate for next-generation high-power devices even as its low thermal
conductivity (κ) limits utilization due to an inability to sufficiently dissipate heat. Despite the importance of this
inherent thermal challenge, a significant discrepancy persists between experimental results and computational
models regarding the anisotropic thermal conductivity of β-Ga2O3. Specifically, computational results are within
experimental error bounds for κ100 and κ001 while underpredicting κ010, suggesting that the bare phonon models
used in the literature are missing essential physics related to the anisotropic thermal transport. In response, we
compute the anisotropic κ using first principles and the Peirels-Boltzmann transport equation under different
approximations. For the simplest model, we consider the heat carriers to be harmonic phonons with scattering
rates obtained perturbatively. These results are then compared with those obtained by including phonon renor-
malization and four-phonon scattering. Our results show that accounting for phonon renormalization resolves
the discrepancy between experiment and theory. This is because phonon renormalization leads to an anisotropic
κ enhancement caused by directionally dependent changes in the phonon group velocities accompanied by a
general increase in phonon lifetime. Owing to the crucial role of these anharmonic interactions in accurately
describing anisotropic thermal transport, we also explore the anharmonicity of individual atoms and show that
the octahedrally coordinated gallium atom is the most anharmonic and thus most likely responsible for the failure
of the harmonic phonon model to describe thermal transport in this material. Finally, we demonstrate that atomic
anharmonicities could be used as a useful metric to guide the tailoring of vibrational properties.
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I. INTRODUCTION

Ultrawide-band-gap (>3.4 eV) semiconductors have reac-
hed a technological maturity in which the fundamental po-
tential has motivated significant effort to pursue commercial
adoption [1]. Since the breakdown voltage increases nonlin-
early with the band gap, ultrawide-band-gap materials are
promising candidates for robust power device performance
at high voltages and temperatures [2]. To capitalize on this
potential, fundamental understanding of the material physics
in those regimes must be known. There remain, however,
knowledge gaps regarding even intrinsic material properties
like thermal conductivity in these materials [3,4]. With this
motivation, we examine here the magnitude and underlying
mechanisms belying the highly anisotropic nature of thermal
conductivity in β-Ga2O3.

β-Ga2O3 is an ultrawide-band-gap (4.8 eV) [5] material
that is commercially available in high-quality wafers pro-
duced using inexpensive melt growth processes [6]. This
allows β-Ga2O3 power devices to be more economically
viable than other wide-band-gap materials such as SiC
and GaN [7]. However, the thermal conductivity (κ) of
β-Ga2O3 is very low (11–27 W m−1 K−1) [8] when com-
pared with these materials (κSiC ≈ 500 W m−1 K−1 [9],
κGaN ≈ 230 W m−1 K−1 [10]). The low κ necessitates more
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aggressive thermal management schemes, such as double-
side cooling [11]. Therefore, thermal management is one of
the significant barriers toward commercialization of β-Ga2O3

electronics. A robust understanding of its intrinsic thermal
transport properties is, therefore, warranted.

β-Ga2O3 has a monoclinic crystal structure, as shown in
Fig. 1, leading to four independent components of the thermal
conductivity tensor [12]. The crystal structure is also highly
anisotropic (a = 12.214 Å, b = 3.0371 Å, c = 5.7981 Å, and
β = 103.83◦) [13], causing significant anisotropy in the mea-
sured thermal conductivity (κ100 = 9.5–18 W m−1 K−1, κ010

= 22.5–29.0 W m−1 K−1, and κ001 = 12.7–21.0 W m−1 K−1)
[8,14–17]. The highly anisotropic thermal conductivity of
β-Ga2O3 differentiates it from other ultrawide-band-gap ma-
terials like GaN that effectively transports heat isotropically
despite possessing a thermal conductivity tensor that is for-
mally anisotropic [18].

The thermal conductivity of β-Ga2O3 has been extensively
studied both experimentally [8,14–17] and computationally
[19,20]. However, discrepancies exist between the com-
putational and experimental thermal conductivities. Specif-
ically, the computational results are within experimental
error bounds for κ100 and κ001 while under-predicting κ010

(≈ 4–32%). This peculiar mismatch suggests that computa-
tional models may be missing important physics relevant to
the anisotropic thermal transport in β-Ga2O3.

The combination of density functional theory (DFT) and
the Peirels-Boltzmann transport equation (PBTE) has led to a
framework capable of predicting thermal transport in solids
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FIG. 1. Conventional unit cell of monoclinic β-Ga2O3. The unit
cell contains 20 atoms with five crystallographically nonequivalent
atoms. One gallium atom is tetrahedrally coordinated (GaI), while
the other is octahedrally coordinated (GaII). The three remaining
oxygen atoms sit between the polyhedra: (OI) is at the corner of two
octahedra and one tetrahedron, (OII) is at the corner of two tetrahedra
and one octahedron, and (O) is at the corner of three octahedra and
one tetrahedron [13].

with high accuracy [21]. However, differences between the
experimentally measured κ and those obtained from the stan-
dard computational workflow (described in detail in Ref. [22])
exist when the assumptions inherent to the predictions con-
flict with the reality of the system under study. More simply,
discrepancies between experiment and theory happen when
assumptions break down. It is, therefore, necessary to consider
the assumptions underlying predictions of the anisotropic
thermal conductivity in β-Ga2O3.

For β-Ga2O3, the standard PBTE method, which presumes
that the phonons are well-defined quasiparticles, is valid.
This assumption is justified if the phonon mean free paths
are reasonably larger than the interatomic spacing or if the
phonon lifetimes are greater than the inverse frequency of the
phonon mode [23]. For β-Ga2O3, experimental measurements
of the phonon lifetimes [24] are consistent with this picture. In
addition, β-Ga2O3 exhibits an appreciably larger thermal con-
ductivity relative to materials where the formalism is known
to break down [25]. Taken together, the phonon quasiparticle
picture is reasonable to use with β-Ga2O3, and hence, the
PBTE is valid. More recently, coherent (interband) contribu-
tions to the lattice thermal conductivity have been shown to
be crucial for strongly anharmonic solids [26–34]. In these
materials, the phonon particlelike (intraband) thermal conduc-
tivity typically lies <1 W m−1 K−1, and the interband channel
(�0.4 W m−1 K−1) thus becomes significant. In contrast,
for β-Ga2O3, the intraband conductivity exceeds these values
by more than an order of magnitude, making any interband
contribution comparatively negligible. Consequently, using
the standard Peierls-Boltzmann approach should be sufficient
to capture both the overall magnitude and the anisotropy of
the thermal conductivity of β-Ga2O3. Therefore, we turn our
attention to the approximations introduced by DFT and the
difficulties that come about when using it to accurately predict
thermal conductivity along all directions in β-Ga2O3.

Defects are an obvious candidate. Standard DFT ap-
proaches employ periodic boundary conditions where the
crystal structure is assumed to be defect free. This is in
contrast with the imperfections that exist in almost every real-
world material. Defects are not, however, the chief cause here.
For example, although neglecting phonon-defect scattering
may explain why κ is overpredicted in two crystal directions
(e.g., κ100 and κ001), thermal conductivity is underpredicted
along the κ010 direction. It seems very unlikely that defects
would mitigate transport along two directions while boosting
it along the third.

Instead, attention is turned to the role of anharmonicity on
anisotropic thermal transport. DFT is an inherently ground-
state approach [35]. This limits any perturbative treatment of
the lattice potential energy expansion terms to be temperature
independent. Therefore, obtaining the phonon energies from
the Hessian matrix of the expansion, known as the harmonic
approximation, leads to phonon energies that are also temper-
ature independent [36]. The finite-temperature effects on the
potential energy expansion terms—and hence on the phonon
energies and even the atomic displacement themselves (i.e.,
polarizations)—are known as phonon renormalization effects.
The extent to which these effects impact κ in β-Ga2O3 in
general and along different crystal in particular is unknown.
Therefore, we focus on anharmonicity and how it manifests
specifically in the thermal transport of β-Ga2O3.

Phonon renormalization effects are negligible for κ at
room temperature in strongly bonded solids such as silicon,
diamond, and MgO [37,38]. However, they are crucial for
accurate prediction of κ in other solids such as NaCl [37],
PbTe [39], and a wide range of oxides including TiO2 [40],
SrTiO3 [41], and CeO2 [38]. Accounting for phonon renor-
malization in the calculation of κ in TiO2, for example, leads
to a 50% increase at room temperature and significantly better
agreement with experimental data [40]. Therefore, phonon
renormalization could play a significant role in determining
the thermal conductivity of β-Ga2O3 and, if ignored, lead to
discrepancies between experiment and prediction.

Similarly, four-phonon (4ph) scattering may also be signif-
icant, requiring its assessment as well. Higher-order phonon
scattering can significantly reduce κ [42–46], especially in
materials whose optical phonons significantly contribute to
the thermal transport [44]. Authors of previous work have
suggested that optical phonon modes contribute >50% to κ010

in β-Ga2O3 [19]. Recognizing this, we examine here the the
net interplay between phonon renormalization and 4ph scat-
tering and its impact on the anisotropic response of thermal
conductivity in β-Ga2O3.

Specifically, we combine a self-consistent phonon frame-
work with a solution of the PBTE to include phonon
renormalization, thermal expansion, and 4ph scattering to
calculate κ of β-Ga2O3 in the temperature range between
200 and 600 K. The upper limit of this range corresponds
to the operational temperature in electric vehicles, where the
temperature near the engine can reach up to 200 ◦C [47].
We observe that including phonon renormalization resolves
the discrepancy between experimental and computational κ

in β-Ga2O3. The κ enhancement due to renormalization is
anisotropic and highest for κ010, the same tensor element that
was significantly underpredicted by previous computational
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studies. Furthermore, we show that 4ph scattering is weak
relative to the dominant three-phonon (3ph) scattering in this
temperature range. By quantifying the anharmonicity of the
individual atoms, we discover that the motion of the octahe-
drally coordinated gallium atom (GaII) is the most sensitive to
the temperature-dependent potential energy surface (i.e., is the
most anharmonic). Practically, this suggests that enhancing κ

of β-Ga2O3 could be achieved by alloying with an element
that takes the Ga position in the crystal structure.

II. METHODOLOGY

In this section, we elaborate on our workflow to calculate κ

of β-Ga2O3 using a first-principles approach. From a solution
of the PBTE for the phonon equilibrium distribution function
fλ, the thermal conductivity tensor [48] is expressed as

καβ = 1

kBT 2NV

∑
λ

(h̄ωλ)2 f 0
λ

(
f 0
λ + 1

)
vα

λvβ

λ τλ, (1)

where λ is a phonon mode index including the polarization
and wave vector, α and β are Cartesian directions, kB is the
Boltzmann constant, T is the temperature, N is the number
of unit cells, V is the volume of the unit cell, h̄ is the re-
duced Planck constant, ωλ is the mode frequency, vλ is the
mode group velocity, and τλ is the mode lifetime. Therefore,
the evaluation of κ requires knowledge of the energy carrier
(phonon) velocities and lifetimes.

These velocities and lifetimes are obtained from DFT us-
ing either the ground-state (standard approach) or from a
finite-temperature (effective) potential energy surface (PES).
To understand this in more detail, we begin by writing the
Taylor expansion of the lattice potential energy (U ) about the
equilibrium position of the atoms

U = U0 + 1

2!

∑
i j

∂2U

∂ui∂u j
uiu j + 1

3!

∑
i jk

∂3U

∂ui∂u j∂uk
uiu juk

+ 1

4!

∑
i jkl

∂4U

∂ui∂u j∂uk∂ul
uiu jukul + . . . , (2)

where U0 is the energy at the equilibrium position, ui repre-
sents the displacement of atom i from its equilibrium position,
and the derivatives represent increasing orders of interatomic
force constants (IFCs). The second-order IFC (Hessian) is
used to calculate the phonon dispersion and therefore veloci-
ties. This is done by diagonalization of the dynamical matrix
assembled from the mass-normalized Hessian. The higher-
order IFCs are needed to calculate the 3ph and 4ph scattering
rates.

Terminating the expansion at the Hessian is known as the
harmonic approximation. In this approximation, the lattice en-
ergy can be written as a sum of noninteracting normal modes.
This assumption is necessary to obtain the phonon energies,
as including higher-order IFC into the lattice potential energy
no longer leads to a diagonalizable dynamical matrix. This
makes accounting for anharmonicity in the phonon energies
(i.e., phonon renormalization) problematic. The temperature-
dependent effective potential (TDEP) accomplishes this task
by introducing model IFCs that represent an effective PES
[like Eq. (2)]. This effectively maps the effect of phonon an-

harmonicity onto the model Hessian. This model Hessian can
be diagonalized to obtain the phonon energies renormalized
by phonon anharmonicity, leading to temperature-dependent
phonon energies. To do this, TDEP constructs the model Hes-
sian and the higher-order IFCs by minimizing the difference
between the model forces and force-displacement datasets.

In this paper, we utilize the stochastic TDEP (s-TDEP)
[49–52] to extract the renormalized Hessian and higher-
order IFCs. The s-TDEP method is based on stochastic
generation of atomic thermal displacements followed by fit-
ting force-displacement datasets to a model Hamiltonian
[53]. Therefore, s-TDEP allows extracting the temperature-
dependent PES, up to fourth-order terms and including
zero-point quantum motion, at a reasonable computational
cost compared with ab initio molecular dynamics (AIMD).
In the TDEP approach, the IFCs are fit in ascending order,
ensuring that the second-order IFCs are the largest. This im-
plies that the second-order IFCs are renormalized to infinite
order. The higher-order IFCs are then fit from the residual
forces. This ensures that there is no double-counting of the
anharmonicity in the higher-order IFCs [37,54,55]. Up to this
point, we showed how to obtain the phonon energies using
either the ground-state Hessian, obtained directly from DFT,
or from the temperature-dependent Hessian constructed by
TDEP. The final task is to lay the theory necessary to calculate
the total phonon scattering rates.

Using the third- and fourth-order IFCs, the 3ph and
4ph scattering rates can be evaluated using Fermi’s golden
rule [48]. In this paper, isotopic scattering is neglected to
focus exclusively on the intrinsic phonon scattering mech-
anisms arising from the anharmonicity of the material. To
obtain the total scattering rate, Mattheisen’s rule is employed
to sum all the contributions from the individual scattering
channels [48,56,57]:

1
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where Nq denotes the total number of grid points used in
the PBTE solution. Superscripts (±) and (±±) differenti-
ate between various 3ph and 4ph scattering mechanisms.
The 3ph processes include absorption (λ + λ′ → λ′′), where
two phonons combine; and emission (λ → λ′ + λ′′), where
one phonon decays into two. For the higher-order 4ph in-
teractions, there are recombination processes (λ + λ′ + λ′′ →
λ′′′), involving the merging of three phonons; redistribution
(λ + λ′ → λ′′ + λ′′′), where two phonons are transformed into
another pair; and splitting (λ → λ′ + λ′′ + λ′′′), where one
phonon splits into three.

Since in this investigation we focus on the effect of an-
harmonicity on κ in β-Ga2O3, it is useful to consider a
quantitative measure of anharmonicity. Such a metric allows
relating macroscopic properties—here, we focus on thermal
transport—to the individual nuclei dynamics. This is further
motivated by the complex nature of β-Ga2O3 having five
nonequivalent atoms in the primitive cell (Fig. 1). Typically,

094308-3



ALKANDARI, HAN, GUO, BEECHEM, AND RUAN PHYSICAL REVIEW B 111, 094308 (2025)

FIG. 2. Plots of the thermal conductivity κ as a function of temperature for three directions: (a) κ100, (b) κ010, and (c) κ001. We include
experimental measurements (red squares [8]) and bare interatomic force constant (IFC) calculation fits (blue line [19]) for comparison. For
our results, we include κ calculated in different approximations: bare IFC with three-phonon (3ph) scattering (blue symbols), renormalized
phonons (Renorm) with 3ph scattering (red symbols), and renormalized phonons with 3ph and four-phonon scattering (black symbols).

anharmonicity is quantified by perturbatively mapping out
the ground-state PES of all the unique atom pairs in the
crystal structure [58,59]. However, this method is tedious,
as the dimensionality of the PES scales with the number of
atoms in the unit cell. Furthermore, if we consider that the
ground-state PES might not accurately describe the dynamics
of nuclei at finite temperatures, then there is no guarantee
that anharmonicity quantification using the ground-state PES
yields valid results. More recently, Knoop et al. [60] derived
a measure of anharmonicity (σA) based on the standard de-
viation of the average difference between the ground-state
harmonic forces and AIMD forces

σA(T ) =

√√√√
∑

Iα

〈[
FIα − F (2)

Iα

]2〉
∑

Iα 〈(FIα )2〉 , (4)

where I represents the atom index, and α represents a Carte-
sian direction. In this paper, we adopt a slightly modified
version of their metric. Instead of using ground-state har-
monic force constants, we rely on the temperature-dependent
(renormalized) IFCs from s-TDEP. This approach allows us
to evaluate an effective anharmonicity for each atom in the
crystal structure at no additional computational cost. We note
that, because TDEP IFCs already include certain anharmonic
effects, this represents an effective (rather than purely ground-
state) measure of anharmonicity, which is especially useful for
systems prone to dynamic instabilities (e.g., showing negative
phonon frequencies). Anharmonicity is typically regarded as
a material property [60]. Here, we examine how it manifests
in very anisotropic materials at the level of individual atoms.

We use VASP 5.4.1 [61–63] for all DFT calculations, Four-
Phonon [57] for the PBTE solution, and TDEP [49–52] to
extract the temperature-dependent IFC. The detailed numer-
ical parameters are discussed in the Appendix. At the time
of preparing the manuscript, we became aware of a study on
κ in β-Ga2O3 including the effect of phonon renormaliza-
tion using TDEP [64]. However, they showed that including
phonon renormalization does not fully resolve underpredic-
tion discrepancy for κ010. In this paper, we show otherwise.
We attribute this to their much coarser DFT numerical set-
tings. For example, we use a cutoff energy of 640 eV with a
(4 × 4 × 4) mesh for the supercell, while they use a 400 eV
cutoff energy and a (1 × 1 × 1) mesh.

III. RESULTS AND DISCUSSION

In Fig. 2, we plot the temperature dependence of the
anisotropic thermal conductivity of β-Ga2O3 for each of the
independent crystal directions. Discrepancies between exper-
iment and theory are evident and can be mitigated with the
inclusion of the salient phonon renormalization effects. Pre-
dictions of thermal conductivity using the bare IFCs from the
literature (blue curve [19]) appreciably overpredict the exper-
imental results (red squares [8]) for κ100 and κ001. However,
for κ010, the bare IFC prediction is nearly equivalent to exper-
iment over a range of temperatures. It is unclear why defects
should affect transport in one direction more than another.
Furthermore, since the computational approach presumes no
extrinsic defects while actual materials are beset by them,
thermal conductivity predictions should be larger than their
measured counterparts to some degree. For these reasons, we
assert that the directional differences are due to some other
factor beyond that of defects.

Figure 2 also includes a summary of our calculated results
including 3ph scattering with the bare IFCs, with phonon
renormalization, and including 4ph scattering with phonon
renormalization (blue, red, and black symbols, respectively).
For κ100 and κ001, our bare IFC phonon results are lower
than the computational results from the literature. Once the
effect of phonon normalization is introduced, κ100 and κ001

increase and are in very good agreement with the bare IFCs κ

from the literature. We attribute differences between our bare
IFC results and those from the literature mainly to different
supercell sizes (160 atoms in this paper vs 80).

For κ010, our bare phonon calculations still anomalously
overlap the experimental and computational literature values.
However, once we introduce phonon renormalization into the
picture, κ010 increases and becomes in line with the obser-
vations of thermal conductivity in the other directions (i.e.,
slightly higher than that of the experiment). This resolves
the discrepancy between experiment and theory for κ010. In-
cluding 4ph scattering has a small (<5%) effect on κ in all
directions and across the temperatures considered. This is
because the phase space for 3ph processes is huge (≈109

processes). This leads to phonon lifetimes being dominated by
3ph scattering processes rather than the weaker 4ph processes,
which typically become dominant if the 3ph phase space is
restricted. Therefore, the following discussion probing the
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FIG. 3. (a) Phonon dispersion plotted along the three reciprocal lattice vectors for the bare phonon model (blue) and the model including
phonon renormalization at 300 K (red). Spectral thermal conductivity for (b) κ100, (c) κ010, and (d) κ001 obtained at 300 K using both bare (blue)
and renormalized phonons (red). The dashed vertical lines represent the frequency of the lowest optical mode and the highest acoustic mode,
respectively.

anisotropic nature of anharmonicity is performed including
3ph scattering only.

Up to this point, we have shown that including phonon
renormalization in the computational model resolves the
anisotropic discrepancy in κ between theory and experiment.
This is a case where anharmonicity manifests itself anisotrop-
ically into the material properties. Therefore, anharmonicity
is not a binary metric for materials with low symmetry. The
importance of this for practical applications cannot be under-
stated. The ability to tune the anharmonicity of a material in a
given direction may be crucial in applications where material
anisotropy is relevant. For example, κ anisotropy could be
leveraged to control heat flow path in electronic systems [65].

Now we turn our attention to understanding the micro-
scopic origins by which phonon renormalization enhances
κ along certain directions more than others. As shown in
Fig. 3(a), accounting for phonon renormalization results in a
slight shift of the phonon mode energies. To further isolate
the phonon modes responsible for the κ enhancement, we
plot the anisotropic spectral thermal conductivity at 300 K
in Figs. 3(b)–3(d) for both the bare IFC and renormalized
phonons. We observe that, across all directions, >90% of
the κ enhancement is due to phonon modes <8 THz. The
spectral functions also show the anisotropic nature of the κ

enhancement due to phonon renormalization: 20% for κ100,
29% for κ010, and 17% for κ001. Furthermore, decomposing κ

into acoustic and optical phonon contributions—as shown in
Figs. 3(b)–3(d)—reveals that both types of modes carry more
heat with the inclusion of phonon renormalization. While
inclusion of the effect modifies the relative contributions from
acoustic and optical modes, the contribution from optical
phonon modes to κ remains significant. For example, optical
modes are responsible for 48% of the heat transport in κ010.
This high optical phonon contribution is common in complex
materials with significant κ anisotropy [66–69].

Since we are dealing with bulk solids, phonon modes carry
more heat either because of an increase in the group velocity
or a decrease in the phonon scattering rate. Therefore, we
investigate the changes in group velocity and lifetimes of the
relevant phonon modes in an attempt to answer two questions:
Why does κ increase when including phonon renormaliza-
tion in the computational model, and why is this increase
anisotropic?

In Fig. 4(a), we plot the phonon lifetimes at 300 K for
both the bare IFC (blue) and renormalized (red) phonons. We
notice that the phonon lifetimes increase across the relevant

phonon frequency range (0–8 THz). This is the origin of the
observed κ enhancement. Differences in the phonon lifetimes
stem from either a change in the number of phonon scatter-
ing events that obey the energy and momentum conservation
(i.e., phase space) or the higher-order IFCs. In Fig. 4(b), we
compare the weighted phase space from both models. The
weighted phase space represents the number of phonon inter-
actions that obey energy and momentum conservation scaled

FIG. 4. (a) Phonon lifetimes and (b) weighted phase-space at
300 K for the bare interatomic force constant (IFC) phonon model
(blue) and the model including phonon renormalization at 300 K
(red).
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FIG. 5. Scatter plot of the relative change in thermal conductivity
(�κα) against the relative change in the heat-averaged group velocity
(�〈vα〉) for the three Cartesian directions: x (blue), y (red), and
z (green) for all studied temperatures (200–600 K). Note that the
x and y directions correspond to the (100) and (010) directions,
respectively. However, the z direction does not correspond to a lattice
vector owing to the nonorthogonal nature of the crystal. See the
Appendix for more detail.

by the occupation factors and normalized by the phonon fre-
quencies. As a result, the weighted phase space is much more
sensitive to phonon frequency shifts than the phase space
alone (order x5 vs order x) [70]. It is clear that the weighted
phase space for the renormalized phonons is smaller than that
of the bare phonons. This provides a clear answer to our first
question. Accounting for phonon renormalization boosts κ as
a result of longer phonon lifetimes due to a more restricted
phonon phase space.

To address the anisotropic κ enhancement, we need to
analyze the phonon group velocity, as it is the only parameter
in the κ expression [Eq. (1)] that has directional compo-
nents. For this purpose, we define a heat-averaged group
velocity 〈vα〉:

〈vα〉 =
∑

λ κα
λ |vα

λ |∑
λ κα

λ

, (5)

where α represents the Cartesian direction, and λ is the mode
index. This metric allows us to meaningfully link changes in
the group velocity to changes in κ . The difference between
the thermal conductivity in the direction of the lattice vectors
(κ010) and that in the Cartesian direction (κzz) is discussed
in the Appendix. In Fig. 5, we plot the relative change in
κα against the relative change in 〈vα〉. We observe that there
is clear correspondence between the change in 〈vα〉 and the
anisotropic κ enhancement. The largest relative κ increase is
in the y direction, which also has the largest relative change in
〈vα〉. Furthermore, the lowest κ increase is in the z direction,
which has a slight decrease in 〈vα〉. The emergence of outliers
is likely due to the nontrivial shifts in the phonon energies due
to phonon renormalization. The consistent observation of this
trend across all studied temperatures underscores the general-
ity of our analysis. This answers our second question—why
is the increase in thermal conductivity anisotropic when ac-
counting for phonon renormalization? With both questions
addressed, the results are fully explained in the framework

of the phonon gas model. Having demonstrated the impor-
tance of accounting for anharmonicity in the phonon energies,
we now turn our attention to addressing the anharmonicity of
the atoms in real space, with an attempt to link it to the κ

increase due to phonon renormalization.
Following the modified anharmonicity metric of Knoop

et al. [60], we plot the temperature dependence of the mean
anharmonicity for all unique atoms in β-Ga2O3 [Fig. 6(a)].
Although the mean anharmonicity at 300 K of β-Ga2O3 (0.21)
is only slightly higher than that of silicon (0.15) [25], ex-
amining the anharmonicity of the individual atoms reveals
important physics. Most importantly, we observe that the octa-
hedrally coordinated GaII (see Fig. 1) is the most anharmonic
atom across the studied temperature range. We also plot the
atom-projected phonon density of states (PDOS) at 300 K
for bare [Fig. 6(b)] and renormalized [Fig. 6(c)] phonons.
It is clear that GaII also peaks and has the highest PDOS
contribution in the phonon frequency range where the κ en-
hancement occurs (0–8 THz). The GaII contribution to the
PDOS even increases slightly when we account for phonon
renormalization. This strongly suggests that the κ increase is
directly related to the dynamics of the GaII nuclei. This reveals
the origin of the failure of the harmonic approximation to
accurately predict the anisotropic κ in β-Ga2O3. Therefore,
it can be argued that including phonon renormalization in the
computational model leads to an increase in κ because it has a
more accurate description of the dynamics of the GaII nuclei.

By examining the anharmonicity of the individual atoms in
β-Ga2O3, we notice that atoms of the same element have sig-
nificantly different anharmonicities. We focus on tetrahedrally
coordinated Ga and octahedrally coordinated GaII, as they
have the highest contribution in the PDOS range of interest
(0–8 THz). The fact that GaI has lower anharmonicity than
GaII is in line with results obtained by Xia et al. [33]. In
their study, they calculate κ of a wide range of binary rocksalt
(octahedral coordination) and zinc-blende (tetrahedral coordi-
nation) materials. They discovered that, regardless of the κ of
a material, rocksalt materials have a stronger response (larger
κ increase) to phonon renormalization than zinc-blende ma-
terials. However, due to the complex structure of β-Ga2O3,
gallium atoms with both coordinations exist. Therefore, what
we reveal in this paper about the link between atom anhar-
monicity, coordination, and phonon renormalization has been
shown before, albeit for materials that have only a single co-
ordination in their structure. In the final part of this paper, we
demonstrate how an analysis of atomic anharmonicity could
be used to tailor vibrational properties in complex structures.

The higher anharmonicity of GaII relative to GaI opens up
an interesting question: What if we replace GaII with another
atom with lower anharmonicity with the purpose of increas-
ing κ? In his seminal work, Slack [71] proposes four rules
for finding materials with higher thermal conductivity: low
atomic mass, strong bonding, simple crystal structure, and low
anharmonicity. Therefore, it would be reasonable to replace
GaII with boron, the lightest element in group III. However,
it has been shown that it is thermodynamically favorable for
boron to occupy the GaI site [72]. The second-lightest atom
in the group is aluminum. Substituting in aluminum, which
preferentially occupies the GaII site, to create a structured
β-AlGaO3 alloy has been shown to increase the mean κ by
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FIG. 6. Temperature-dependence of (a) the nonequivalent-atom anharmonicity and (b) the atom-resolved phonon density of states at 300 K
for the bare interatomic force constant (IFC) and (c) renormalized phonons.

>70% [73]. Here, we have demonstrated that using Slack’s
rule to lower the atomic masses, atom anharmonicity to decide
on which element to replace and thermodynamics to under-
stand preferential occupation sites provides a rational design
process that enables tailoring the vibrational properties of
complex materials. A comprehensive study to tune the thermal
transport or optical response in β-Ga2O3 or other complex
structures is the subject of a future study.

IV. CONCLUSIONS

To conclude, using DFT coupled with a solution of the
PBTE, we resolve the inconsistency between experimen-
tal results and computational models for κ in β-Ga2O3.
Our findings reveal that phonon renormalization increases
κ anisotropically. This anisotropic enhancement is attributed
to phonons with longer lifetimes due to a more restricted
phase space and anisotropic changes in phonon group veloc-
ities. Moreover, in our investigation into the anharmonicity
of atoms, we identified the octahedrally coordinated gallium
atom as the most anharmonic, likely causing the failure of the
harmonic phonon model in β-Ga2O3. We also gave insights
that atomic anharmonicities could serve as a valuable metric
for tuning the vibrational properties of materials. These in-
sights provide a pathway for optimizing thermal and optical
properties in β-Ga2O3 and other complex materials.
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APPENDIX: NUMERICAL PARAMETERS AND DETAILS

For DFT simulations, we use VASP 5.4.1 [61–63,74,75]. All
calculations were carried out using the PBEsol [76] exchange-
correlation functional with the projector augmented-wave
method for the pseudopotentials. The valence electron
configurations include 3d10 4s2 4p1 for Ga and 2s2 2p4 for O.
For the structural relaxation, we use a cutoff energy of 640 eV,

an energy convergence threshold of 10−8 eV, a force con-
vergence threshold of 10−7 eV/Å, and a 	-centered k-point
mesh of 4 × 16 × 8. Using these settings, we obtain a relaxed
conventional unit cell with a = 12.269 Å, b = 3.048 Å,c =
5.810 Å, and β = 103.78◦. These are in good agreement
with experimental results (a = 12.214 Å, b = 3.0371 Å, c =
5.7981 Å, and β = 103.83◦) [13].

For the harmonic phonon calculations, we use the DFPT
module in VASP (on a 4 × 4 × 4 mesh) with PHONOPY [77,78]
to calculate the phonon dispersion for a 1 × 4 × 2 super-
cell (160 atoms). For the polar correction, we also calculate
the Born effective charges and dielectric tensor for the unit
cell using the DFPT module in VASP. The higher-order
IFCs were calculated using the finite-displacement method
as implemented in ShengBTE [48,79,80] and its FourPhonon
[57] extension package with the default displacement value
(0.01 Å). For the third- and fourth-order IFCs, we use the
11th-nearest neighbor (3.5 Å) and second-nearest neighbor
(2.38 Å) cutoffs, respectively.

For the renormalized phonons, we construct a 1 × 4 × 2
supercell from the relaxed unit cell which is expanded using
the experimental value of the linear thermal [81] expansion at
each temperature. Following this, we generate an initial guess
of the phonon dispersion based on the Debye temperature
(738 K) [8]. Thermally excited supercells are then generated
from the normal modes based on a Bose-Einstein distribution.
A new set IFCs is obtained for each temperature from these
thermal snapshots, and the process is repeated until a self-
consistent solution is achieved. This method is described in
detail in Ref. [53]. We use the same IFC cutoffs used for
the harmonic phonons, and we consider the IFCs converged
when the thermal conductivity changes by <2%. To achieve
this, we generate 200 configurations twice, followed by 400
configurations twice, without mixing the IFCs. In hindsight,
we would not recommend such a process, as it is computa-
tionally wasteful and could lead to oscillatory convergence. A
more reasonable approach would be to use a geometric series
with mixing of the IFCs as described in Ref. [53]. Further
expanding on this matter, we tested the two workflows for
iteratively determining the IFCs: one that mixes IFCs between
successive steps and one that does not. We find that both
approaches lead to final thermal conductivity values that agree
within 2%, indicating no significant difference in accuracy.
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However, adopting an IFC mixing scheme generally requires
fewer iterations and DFT calculations to reach convergence.

To calculate the thermal conductivity, we use the Sheng-
BTE extension package FourPhonon on a 10 × 40 × 20 mesh.
We also calculate the thermal conductivity under the relaxed-
time approximation (RTA). The difference between the RTA
and the full iterative solution is <2%. For 4ph scattering, we
adopt a sampling-based approach. In this method, the 4ph
scattering rates are determined from a subset of all phonon
scattering events as described in Ref. [82]. Following a con-
vergence test, we use a sampling size of 8 × 107.

Since the lattice vectors of β-Ga2O3 are not orthogonal,
we need to convert the computational thermal conductivity
tensor (obtained in Cartesian coordinates) to a tensor that
is in the basis of the lattice vectors. This will enable us
to compare our results to experimental values. For κ100 and
κ010, these directions are parallel to the Cartesian axes (i.e.,
κ100 = κxx and κ010 = κyy). However, this is not the case
for κ001, which has components in the x and z directions.
Therefore, we calculate κ001 from the Cartesian tensor as
follows [19]:

κ001 = κxx sin2(β ) + κxz sin(2β ) + κzz cos2(β ). (A1)
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