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Abstract 

 Monte Carlo simulations are commonly used to calculate photon reflectance, 

absorptance, and transmittance of multi-layer scattering and absorbing media, but they can 

quickly become prohibitively expensive as the number of layers increases. In this study, we 

show that although a plain neural network suffers from the curse of dimensionality and fails 

to yield acceptable predictions of multilayer media, we introduce a recurrent neural network 

(RNN) trained on the same Monte Carlo simulation dataset to achieve accurate prediction  

with great acceleration. Our RNN architecture solves the curse of dimensionality by keeping 

the number of inputs into the network constant for any number of layers. We demonstrate the 

general applicability with three diverse case studies of multilayer architectures: tissue, 

radiative cooling paint, and atmospheric clouds, achieving 1-2 orders of magnitude 

acceleration over Monte Carlo simulations while providing up to one order of magnitude less 

error than a plain neural network. This recurrent neural network approach enables affordable 

photon multi-layer modeling, optimization, and high throughput screening for broad 

applications across dosimetry, atmospheric studies, and spectrally selective radiative 

coatings. 

 

  



Introduction 

  Radiative transport simulations through scattering and absorbing media are utilized in 

many fields, such as neutron transport in nuclear engineering [1], photon transport in heat 

transfer [2] and climate research [3], and imaging and dosimetry in biomedical applications 

[4]. These radiative transfer simulations commonly use either the Monte Carlo method or 

finite volume/difference methods. While often less efficient, the Monte Carlo method is a 

popular choice because the algorithm for solving is straightforward and highly parallelizable, 

the prediction is unbiased, and the uncertainty can be easily related to the number of particles 

modeled [5]. Example applications of Monte Carlo simulations include modeling light 

propagation in tissue [6], optimizing particle sizes in radiative cooling paints [7], [8], [9], and 

modeling light scattering and absorption through clouds in the atmosphere [10], [11]. To 

solve these problems, several Monte Carlo open-source codes have been published and 

widely used for multi-layer plane-parallel radiative transport, such as MCML by Wang et al. 

[12]. MCML models radiative transport through multi-layer planar media, which are 

commonly seen in modeling tissues, the atmosphere, and thin nanocomposite coatings. 

However, Monte Carlo simulations for multi-layer media can be very computationally 

intensive, especially for highly scattering media, which can limit optimization [8], high 

throughput screening [13], and inverse parameter estimation [14]. 

 Recently, regression machine learning techniques have been used as surrogate models 

to significantly accelerate simulations across many fields including Computational Fluid 

Dynamics (CFD) [15], [16], phonon transport [17], as well as Monte Carlo radiative transport 

[18], [19]. Peng et al. used a Convolutional Neural Network (CNN) to denoise a dose map 

created with Monte Carlo simulations, achieving a 76-fold speedup over high resolution 

Monte Carlo simulations [20]. Hokr and Bixler used a neural network to solve the inverse 

Monte Carlo problem, predicting the optical properties of a single layer medium from the 



spectral response [21]. Neural networks have also directly replaced Monte Carlo simulations 

for dose maps by predicting where radiation is absorbed in tissue [22], [23]. Our previous 

work predicted the spectral response (reflectance, absorptance, and transmittance) of single 

layer media with a fully connected neural network achieving significant speedups of 1-3 

orders of magnitude while making it applicable to a broad range of scattering and absorbing 

materials [24].  

However, the fully connected neural network method previously used cannot achieve 

the same level accuracy for multi-layer spectral response predictions due to the curse of 

dimensionality. The previous network takes five inputs, the refractive index (𝑛), absorption 

coefficient (𝜇!), scattering coefficient (𝜇"), asymmetry parameter (𝑔), and layer thickness (𝑡), 

but can be non-dimensionalized to reduce the number of inputs to four. Trained on a dataset 

of 41,000 Monte Carlo simulations, this gives a data density of about 14 datapoints per input 

dimension (14# ≈ 41,000). To use this same method to train a neural network on three-layer 

media, for example, would require 12 inputs (4 inputs per layer). If the same size dataset of 

41,000 Monte Carlo simulations is used, this would give a data density of only about 2.4 

datapoints per input dimension (2.4$% ≈ 41,000). This is too sparse to retain the accuracy 

required for many applications. If the original data density is to be maintained, a dataset of 

14$% ≈ 5.7 ∗ 10$& simulations is needed, which is not feasible. This is known as the curse of 

dimensionality, or the Hughes phenomenon [25], which states that as the number of inputs 

grows, the amount of data needed grows exponentially. Methods to deal with the curse of 

dimensionality generally focus on feature selection and decreasing the number of inputs 

required. This is commonly done through removing highly correlated inputs by analyzing 

Pearson or Spearman correlation coefficients [26], [27] or through Principal Component 

Analysis (PCA) [28]. These methods will not benefit radiative transfer because the material 



properties cannot be further reduced, and each layer’s properties are independent of one 

another.  

 To address this challenge, in this study we demonstrate a Recurrent Neural Network 

(RNN) approach for accelerated prediction of the spectral response, including reflectance, 

absorptance, and transmittance, in multi-layer media. We show the RNN architecture 

provides three key benefits over the plain NN previously used. First, by recursively inputting 

a layer’s optical properties, the total number of input dimensions remains the same as the 

single layer case instead of increasing with the number of layers as a plain NN would. This 

solves the curse of dimensionality, and as we show later, allows the RNN to perform 

significantly better than a plain NN on the same size dataset. Second, the architecture allows 

for prediction of multilayer structures containing any number of layers, even if the number of 

layers is outside the maximum number of layers in the training dataset. Third, the RNN can 

train on the entire dataset comprised of media with varying numbers of layers, providing 

improved accuracy. The plain NN cannot achieve this as separate NNs with different 

architectures are required to train for media with differing numbers of layers due to the 

varying number of inputs. This RNN architecture provides significant speedups of up to 2 

orders of magnitude over Monte Carlo simulations, allowing for accelerated optimization, 

high throughput screening, and spectral response predictions for many applications. 

Additionally, the trained RNN parameters and inferencing code is open sourced on GitHub 

(https://github.com/dcarne33/RNN-MC). 

 

Results 

Recurrent and plain neural network comparison 

The plain NN and proposed RNN architecture and workflow are shown in Figs. 1(a-

b). The RNN runs the four dimensionless optical properties of each layer and the hidden state 

https://github.com/dcarne33/RNN-MC


through the network sequentially starting with the top layer. After each layer is run, the 

spectral response including the reflectance (𝑅), absorptance (𝐴), and transmittance (𝑇) for the 

entire multi-layer medium is output. The hidden state (ℎ') is initiated as all zeros for the first 

iteration of the RNN. Subsequent iterations use the hidden state output from the previous 

iteration of the RNN. The values of the hidden state passed between iterations are trained 

through the backpropagation process, meaning they are not manually selected. We theorize 

that the RNN is able to compress all necessary information about previous layers into a 

hidden state, allowing an RNN to be used for any number of layers instead of a separate plain 

NN for each number of layers. Training and validation datasets are generated using Monte 

Carlo simulations, as shown in Fig. 1(c), modeling 50,000 particles per simulation sampled 

over a broad range of optical properties. Using an RNN provides three key benefits over a 

plain NN which we demonstrate here.  

 
Figure 1: (a) Current process used for machine learning radiative predictions, where a separate NN is used for 
media with different numbers of layers. (b) Proposed solution using an RNN to recursively input layers, where 
𝑥! is the input tensor, ℎ! is the hidden state, and (𝑅, 𝐴, 𝑇)" is the spectral response after 𝑛 layers. (c) Dataset 
generation using Monte Carlo simulations. 

 



The first key benefit is that the RNN solves the curse of dimensionality for multi-layer 

radiative transfer problems. Using a plain NN requires four inputs for one layer, eight inputs 

for two layers, twelve inputs for three layers, and so on. As the number of input dimensions 

increases, the neural network requires exponentially more data to achieve comparable 

accuracy. This is a problem because the number of Monte Carlo simulations required for 

highly accurate multi-layer predictions becomes unfeasible. The RNN solves this problem as 

the number of inputs into the network, excluding the hidden state, remains at four regardless 

of the number of layers. This also makes intuitive sense that the RNN would perform better 

than a plain NN here. For a plain NN to learn four layer media, it has four separate input 

nodes for the refractive index of each layer. The plain NN needs enough data to learn how 

these four dimensions interact with all the other dimensions. As for the RNN, the refractive 

index is always input into the same node, so the RNN only needs enough data to learn the one 

dimension instead of four. To test our prediction that the RNN will significantly outperform 

the plain NN for the same dataset, four separate plain NNs are trained on the exact same 

dataset the RNN is trained on. Each plain NN has the same number of nodes and hidden 

layers as the RNN. Figure 2(a) shows the predicted vs true spectral response of the RNN and 

plain NNs, and Fig. 2(b) shows the mean prediction time as a function of mean absolute error 

for Monte Carlo, the RNN, and each plain NN. The RNN achieves between a significant 340-

fold mean speedup over the Monte Carlo simulation (50,000 photons), at the cost of 3.9-fold 

increased error. Further comparison at equivalent levels of error is performed in the included 

case studies. Due to the curse of dimensionality, in Fig. 2(b) the plain NN faces an 8.1-fold 

increase in error in four layer media predictions compared to one layer media, whereas the 

RNN sees only a 1.5-fold increase. The same trend is observed in the maximum absolute 

error, where the RNN achieves 11.5-fold lower maximum error than the plain NN (0.040 vs 

0.46) for four layer media. This data clearly shows the curse of dimensionality with the plain 



NN suffering significant increases in mean and maximum error as the number of layers 

increases, whereas the RNN remains stable or marginally increases. 

 
Figure 2: Comparison of RNN vs. plain NN on media composed of one to four layers on the validation dataset. 
(a) Predicted vs. true reflectance, absorptance, and transmittance. (b) Mean prediction time per datapoint as a 
function of mean absolute error. 
 

 The second key benefit is the ability of the RNN to generalize the multi-layer 

radiative transfer problem to predict any number of layers, even if the number of layers is 

outside the range of the training dataset. Figure 3(a) shows the predicted vs true spectral 

response of the RNN for five and six layer media, and the mean absolute error in Fig. 3(b). 

These results show that while the RNN was solely trained on data including up to four layer 

media, it successfully predicts five and six layer media with only marginally higher mean 

absolute error. Additionally, as highlighted in Fig. 3(b), enforcing physical laws, including 



the summation law (𝑅 + 𝐴 + 𝑇 = 1), after the prediction is made reduces the mean absolute 

error by 2.6%. The ability of the RNN to generalize the problem for any number of layers 

physically makes sense. Imagine a two-layer medium, where one knows the individual 

spectral response of each layer. These values cannot easily be combined, because the angular 

distribution of radiation between the two layers will change the spectral response of each 

layer, as well as the differences in Fresnel reflectance at the boundary. To combine the two 

layers into one medium, the radiation angular distribution at the bottom surface of the upper 

layer must be known. Once these two layers are combined, they can be considered as one 

effective layer. To add on a third layer, all that is needed is the spectral response of the 

effective layer (first two layers) and the radiation angular distribution of the bottom surface of 

the effective layer. The radiation angular distribution of each individual layer within the 

effective layer is not needed as that is accounted for in the effective layer’s specular response. 

So, in theory, the hidden state would carry information including the spectral response of an 

effective layer including all the previous layers iterated through the RNN, and the radiation 

angular distribution of the bottom most surface of the effective layer. Since the spectral 

response of each layer can be compressed into a single effective layer, this prevents any long-

term memory issues that may come up such as in natural language processing where more 

complex RNNs such as Long Short Term Memory (LSTM) RNNS and Gated Recurrent 

Units (GRUs) are used [29].  

 



 
Figure 3: RNN accuracy on the validation dataset with up to six layer media. (a) Predicted vs. true reflectance, 
absorptance, and transmittance. (b) Mean absolute error for varying numbers of layers. 
 

In Fig. 3(a), the datasets with five and six layer media has a mean transmittance of 

less than 1%. The argument could be made that the RNN only successfully predicts five and 

six layer media because those additional layers don’t affect the spectral response. An 

additional validation dataset with 500 Monte Carlo simulations per number of layers for six 

through ten layer media is generated by sampling thinner layers to allow for high 

transmittance (mean transmittance greater than 39%). On this dataset (Figure S1(b)), while 

the error does increase gradually as the number of layers increase, even for ten layer media 

the average absolute error is less than 0.03 (3 percentage points), showing the RNN’s ability 

to generalize the problem for media with any number of layers.  

The third key benefit of the RNN architecture is the ability to train on the entire 

dataset. Even though the RNN and plain NN for one layer media have the same number of 

inputs and train on the same number of single layer datapoints, the RNN has 11% lower mean 

absolute error (Fig. 2(b)). This is because the RNN trains on the entire dataset (74,880 

simulations) including one through four layer media, while each plain NN can only train on a 

set number of layers (18,720 simulations per number of layers). This reduction in error shows 

training the RNN on multi-layer media will also reduce the single layer error and vice-versa. 

It allows for considerably more efficient usage of the dataset compared to using a plain NN 



where the training dataset must be split up based on the number of layers for each network to 

train on.  

To highlight the broad applicability of this RNN framework and to directly compare 

the RNN and plain NN to Monte Carlo simulations at a comparable accuracy, we present 

three case studies on multi-layer tissue, radiative cooling paint, and atmospheric models. 

Case study 1: Melanosome absorption in phototherapy 

 Radiation plays many important roles in the medical field, largely through radiation 

therapy [30] and imaging techniques [31]. Within radiation therapy, Monte Carlo simulations 

are commonly used for dosimetry, to predict and optimize the absorption of radiation within 

tissue [32]. One such type of radiation therapy is phototherapy, which utilizes a 430 – 490 nm 

laser to treat a variety of conditions affecting the skin including hyperbilirubinemia [33]. 

Here, case study 1 (Figs. 4(a-b)) investigates absorptance of 480 nm light with varying 

melanosome volume fraction in skin tissue, considering the epidermis, dermis, and 

subcutaneous fat as three layers with differing optical properties. Details on optical property 

calculation and modeling can be found in section 5 of the SI. The RNN, plain NN, and Monte 

Carlo absorptance prediction as a function of melanosome volume fraction is seen in Fig. 

4(a). Here, the RNN on average achieves 6.8 times lower error than the plain NN. Figure 4(b) 

plots the absolute error as a function of time per simulation on a log-log scale. Monte Carlo 

simulations can readily trade error for computational time by modeling an increased number 

of particles. Therefore, comparisons of the RNN to the Monte Carlo method must compare 

time savings at an equivalent error, and decreased error at an equivalent simulation time 

based on the trendline shown. Monte Carlo simulation with 2,000,000 particles simulated 

(mean error less than 0.0002) is considered the ground truth value for determining absolute 

error. For the same time required, the RNN provides 6.4x reduced error compared to Monte 



Carlo. For the same error, the RNN provides a 43x acceleration compared to Monte Carlo. 

Additionally, for case study 1, the RNN error is less than that of Monte Carlo with 50,000 

particles simulated (Fig. 4(b)), the number of particles used to generate the training dataset. 

While the other case studies have higher error than Monte Carlo with 50,000 particles 

simulated (Figs. 4(d), 4(f)), this highlights the potential for machine learning to denoise the 

training dataset and achieve higher accuracy than the training data with proper scaling 

(scaling law shown in Fig. S2). 

 
Figure 4: Case studies comparing the RNN to the Plain NN and Monte Carlo method for (a) three layer tissue, 
(b) three layer radiative cooling paint, and (c) two layer atmospheric clouds. 



Case study 2: Radiative cooling paint 

 Spectrally selective radiative coatings are widely used across a broad range of 

applications including anti-reflection coatings for solar panels [34], highly reflective and 

variable emissivity coatings for spacecraft [35], highly absorptive coatings for solar heating 

[36], and low emissivity coatings for energy efficient windows [37]. Recently, radiative 

cooling paints have made significant advances, including the ability to provide full daytime 

sub-ambient cooling through a combination of high solar reflectivity and sky window 

emissivity [38], [39], [40]. Here, case study 2 (Figs. 4(c-d)) models the spectral reflectance of 

a three layer radiative cooling paint, including an acrylic clear coat for mechanical protection, 

a layer of BaSO4-acrlic paint for UV reflectance, and a layer of TiO2-acrylic paint for strong 

visible through near infrared reflectance. Details on optical property calculation and modeling 

can be found in section 6 of the SI. Here, the RNN on average achieves 14 times lower error 

than the plain NN. Figure 4(d) plots the absolute error as a function of time per simulation on 

a log-log scale. For the same time required, the RNN provides 3.8x reduction in error 

compared to Monte Carlo. For the same error, the RNN provides a 14x acceleration 

compared to Monte Carlo. 

Case study 3: Atmospheric modeling 

 Simulating atmospheric radiative transfer is important for weather modeling, climate 

change predictions, and studying the potential of solar geoengineering. The atmosphere is 

comprised of many optically active features which induce scattering and absorption, 

including various cloud types, ozone (O3), carbon dioxide (CO2), and a mixture of aerosols. 

While these features have complex geometries, many climate models apply the plane-parallel 

assumption, also known as the independent column approximation [41], to simplify the 

analysis and reduce the computational load [42]. Here, case study 4 (Figs. 4(e-f)) models the 



spectral reflectance of a simplified atmospheric model considering two layers of clouds, an 

upper layer cumulonimbus cloud and a lower layer stratus cloud. Details on optical property 

calculation and modeling can be found in section 7 of the SI. Here, the RNN on average 

achieves 5.2 times lower error than the plain NN. Figure 4(f) plots the absolute error as a 

function of time per simulation on a log-log scale. For the same time required, the RNN 

provides 3.0x reduced error compared to Monte Carlo. For the same error, the RNN provides 

an 8.8x acceleration compared to Monte Carlo. 

 To allow readers to test and utilize this RNN, it has been open sourced in two 

methods. First, the feedforward function and the RNN’s parameters including the weights and 

biases are available on GitHub (https://github.com/dcarne33/RNN-MC). The Python code 

here is easy to use and walks users through how to run the RNN. Second, the RNN has been 

implemented into FOS (https://github.com/FastOpticalSpectrum/FOS), our open-source code 

for modeling nanoparticle media, to allow users accelerate optimization and test multi-layer 

designs such as for radiative cooling paint. In addition to the three case studies highlighted, a 

comparison to an experimentally measured paint sample is included in section 8 of the SI to 

highlight the applicability of the RNN. The work has immediate benefits for simulating, 

optimizing, and high throughput screening of plane-parallel media, but we also hope it will 

inspire future work in the use of RNNs for three-dimensional media including for more 

complex atmospheric conditions, combustion, nuclear, and tissue modeling. 

 

Conclusion 

 In summary, this study demonstrates a recurrent neural network to significantly 

accelerate single and multi-layer radiative transfer predictions typically calculated through 

Monte Carlo simulations. The RNN architecture provides three key benefits over a plain NN 

used in previous studies. First, by recursively inputting a layer’s optical properties, the total 



number of input dimensions remains the same as the single layer case and doesn’t increase 

with the number of layers as a plain NN would. This solves the curse of dimensionality, 

allowing the RNN to significantly outperform a plain NN on the same size dataset. Second, 

the architecture allows for any number of layers to be predicted, even if the number of layers 

is outside the maximum number of layers in the training dataset. Third, the RNN can train on 

the entire dataset of multi-layer media, whereas each plain NN can only train on a set number 

of layers. Three case studies are shown including multi-layer tissue, radiative cooling paint, 

and atmospheric clouds. These examples show the speedup ranges up to 1-2 orders of 

magnitude over Monte Carlo simulations depending on the scattering and absorption 

properties, with significantly lower error than the plain NN. The RNN has been made open 

source allowing others to utilize the pretrained model for greatly accelerating optimization 

and high throughput screening for applications including dosimetry, atmospheric studies, and 

spectrally selective radiative coatings. 

 

Methodology  

RNN architecture and workflow 

 Although RNNs are commonly used for natural language processing and time series 

data [29], spectral response predictions of multi-layer scattering media can also be thought of 

as a sequential problem. The overall workflow and architecture of the RNN used in this work 

is shown in Fig 1. First, the layer optical properties are non-dimensionalized to allow for a 

broader range of input values as well as reduce the number of inputs from five to four. The 

four inputs include the refractive index (𝑛), the dimensionless absorption coefficient (𝜇! ∗ 𝑡), 

the dimensionless scattering coefficient (𝜇" ∗ 𝑡), and the asymmetry parameter (𝑔). Each of 

these inputs are then normalized based on knowledge of how they scale and to keep each 



input value between zero and one (more on this in section 1 of the SI). Each layer’s optical 

properties are sequentially input into the RNN starting with the top layer, along with the 

hidden state (ℎ') which is initialized as all zeros. The RNN outputs the spectral response of 

the composite medium, based on the layer properties provided to the RNN and any preceding 

layers, and generates the hidden state to pass to the next layer’s input. After all the layers 

have been sequentially run through the RNN, the spectral response is output, including the 

reflectance (𝑅), absorptance (𝐴), and transmittance (𝑇). Finally, physical laws are manually 

enforced by correcting any values over one (100%) and any values below zero (0%), and by 

dividing by the summation of reflectance, absorptance, and transmittance to enforce the 

summation law (𝑅 + 𝐴 + 𝑇 = 1). Finally, physical laws are enforced through two 

mechanisms. First, any value over one (100%) is set to one, and any value below zero (0%) is 

set to zero. Second, the summation law (𝑅 + 𝐴 + 𝑇 = 1) is enforced by normalizing each 

value as shown in eq. 1 for the corrected reflectance (𝑅()*).  

𝑅()* =
𝑅

𝑅 + 𝐴 + 𝑇 (1) 

 The RNN architecture includes three hidden layers with 1024 nodes each and 16 

values in the hidden state. ReLU activation [43], [44] is applied to each hidden layer, the loss 

function is Mean Square Error (MSE) [44], and the optimizer is Adam [45] with a learning 

rate of 0.0001, with each parameter selected based on hyperparameter testing. The plain 

Neural Network (plain NN) is trained using the same number of nodes, hidden layers, 

optimization, and hyperparameters. Overall, so long as Adam optimization is used, any 

sufficient number of nodes, hidden layers, and hidden state sizes only marginally affects the 

validation error for both the RNN and Plain NN.  

Monte Carlo modeling and dataset generation 



 Creating the dataset to train and evaluate the RNN and plain NN, as shown in Fig. 

1(c), includes three main steps, selecting the range of optical properties, the sampling 

method, and the Monte Carlo modeling. A dataset of 80,880 Monte Carlo simulations with 

50,000 particles per simulation is generated using FOS [46], our open source code where the 

Monte Carlo method is based on the open source code MCML by Wang et al. [12]. Monte 

Carlo modeling typically takes five inputs per layer, the refractive index (𝑛), absorption 

coefficient (𝜇!), scattering coefficient (𝜇"), asymmetry parameter (𝑔), and layer thickness (𝑡). 

Here, to reduce the number of inputs into the neural network from five to four per layer, the 

dimensionless scattering coefficient (𝜇"𝑡) and absorption coefficient (𝜇!𝑡) are used and 

thickness removed from the inputs. These properties are randomly sampled with 𝑛, 𝑔, and the 

number of layers (#𝐿) being uniformly sampled, and 𝜇"𝑡 and 𝜇!𝑡 sampled on a logarithmic 

scale due to knowledge of how scattering and absorption coefficients scale (sampling detailed 

in section 2 of the SI). The data is then split so that there are 74,880 simulations in the 

training dataset containing multi-layer media uniformly sampled from one to four layers, and 

6,000 simulations in the validation dataset containing multi-layer media uniformly sampled 

from one to six layers.  
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1: Input normalization 

 The input normalization formulas shown in Eqs. (1 – 4) are manually tested by trial 

and error and selected based off knowledge of how varying one input affects the spectral 

response. The neural network does not necessarily need to have the inputs normalized in this 

manner, but it does assist the network train faster as the solution is easier to fit. Additionally, 

each input is normalized between zero and one so that any one input does not have a higher 

initial weighting than others. 

𝑛+)*, = 𝑛/2.5 (1) 

(𝜇! ∗ 𝑡)+)*, = (log(𝜇! ∗ 𝑡 + 0.0001) + 4)/8.69154 (2) 

(𝜇" ∗ 𝑡)+)*, = (log(𝜇" ∗ 𝑡 + 0.0001) + 4)/8.69549 (3) 

𝑔+)*, = 1 − (1 − 𝑔)$/& (4) 

 

 

 

2: Dataset sampling 

 Data sampling for the refractive index and asymmetry parameter are linear. However, 

since scattering and absorption trend exponentially, the absorption coefficient, scattering 
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coefficient, and thickness are sampled differently as shown in Eqs. (5 – 7) where 𝜁 is a 

random number uniformly sampled from zero to one. For example, a non-dimensionalized 

absorption coefficient going from 0.1 to 0.2 can have a bigger impact on reflectance than 

going from 1000 to 2000. Because of this, many different orders of magnitude must be 

sampled. 

𝜇! = 0.01(10./ − 1) (5) 

𝜇" = 0.01(10./ − 1) (6) 

𝑡 = 0.002 + 0.005(10$.1%2&/ − 1) (7) 

 

3. RNN many layer predictions 

 
Figure S1: (a) Mean dataset spectral response (+/- variance) for varying numbers of layers. (b) RNN mean 

absolute error for five to ten layer media on a high transmission validation dataset. 

 

 

4. Dataset scaling law for RNN 



 
Figure S2: RNN mean square error as a function of dataset size with a power law trendline. 
 

Figure S2 shows how the RNN Mean Square Error (MSE) scales with dataset size. 

This exhibits the RNN architecture follows a power law scaling relating MSE to dataset size, 

allowing for predictions of dataset size required to meet desired accuracy. This insight reveals 

that the RNN is not the limiting factor in accuracy but instead the dataset size and can be 

scaled based on user requirements.  

 

5. Case study 1  

The optical properties for each of the three layers are calculated from the equations 

and sources in Jacques et al. [1]. The reduced scattering coefficients for epidermis, dermis, 

and subcutaneous fat are from Salomatina et al. [2]. The refractive index is calculated based 

on the refractive index of water and dry tissue from Jacques et al. [3]. The percentage of 

blood, water, oxygen saturation, and fat to calculate the absorption coefficients for dermis 

and epidermis are from Choudhury et al. [4] and for subcutaneous fat from Weaver et al. [5]. 

The epidermis, dermis, and subcutaneous fat are from Lintzeri et al. [6], Ha et al. [7], and 

Kanehisa et al. [8], respectively. The optical properties chosen based on similar values to 

these sources are listed in Table S1. The epidermis absorption coefficient (𝜇! = 500𝑓,34) is a 

function of the melanosome volume fraction (𝑓,34) which is varied from 0.025 – 0.05. 



Table S1: Optical properties of three tissue layers including the refractive index (𝑛), reduced scattering 
coefficient (𝜇"5 ), absorption coefficient (𝜇!), and layer thickness (𝑡). 

Layer 𝑛	[−] 𝜇"5 	[cm6$] 𝜇!	[cm6$] 𝑡	[cm] 
Epidermis 1.50 71.5 500𝑓,34 0.0075 

Dermis 1.39 47.4 0.192 0.1 
Subcutaneous fat 1.48 15.2 0.755 2 

 

6. Case study 2 

 The three layer radiative cooling paint consists of a 30 µm acrylic clear coat for 

mechanical properties, a 100 µm layer of BaSO4-acrlic paint for UV reflectance, and a 400 

µm layer of TiO2-acrylic paint for strong visible through near infrared reflectance. The 

BaSO4 is at a 60% volume fraction and 0.2 µm in diameter. The TiO2 is at a 60% volume 

fraction and 0.6 µm in diameter. The optical properties for each of these layers are calculated 

using the Mie theory implementation in FOS [9], our open-source code, from 0.25 µm to 2.5 

µm wavelength. 

7. Case study 3 

 The optical properties of the two cloud layers are based on the number of drops per 

unit volume, liquid water content, mode radius, and cloud height presented in Stephens et al. 

[10]. These values, as shown in Table S2, are then used to calculate the optical properties 

with the Mie theory implementation in FOS [9] from 0.25 µm to 2.5 µm wavelength. 

Table S2: Properties of stratus and cumulonimbus clouds based on values from Stephens et al. [10]. 
Layer Number of 

drops [cm6$] 
Liquid water 

content [g	cm6$] 
Mode radius 

[µm] 
Thickness 
[km] 

Stratus 440 0.22 3.5 0.5 
Cumulonimbus 72 2.50 6 3 

 

8. Experimental comparison 



 
Figure S3: Reflectance as a function of wavelength for BaSO4 paint from experimental measurement, Monte 
Carlo simulation, and RNN prediction. 
 While the Monte Carlo method is a well validated method to solve radiative transport 

[11], we include a comparison to experimental results here to highlight the applicability of 

the RNN. A 247 µm thick paint with a silicone-based binder is manufactured at a 10% 

volume fraction of 398 ± 130 nm BaSO4 pigment. UV-Vis-NIR spectroscopy measured the 

spectral response from 0.25 µm to 2.5 µm wavelength, providing an integrated solar 

reflectance of 43.2%, whereas Monte Carlo and the RNN predict an integrated solar 

reflectance of 43.1%.  
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